量化技术背景:在自然语言处理领域,大型语言模型(LLM)在自然语言处理领域的应用越来越广泛。然而,随着模型规模的增大,计算和存储资源的需求也急剧增加。为了降低计算和存储开销,同时保持模型的性能,LLM大模型的量化技术应运而生。
由于我们的项目部署在云端,符合大模型量化的使用场景,因此我们要通过大模型量化来压缩模型的存储空间大小,优化存储空间、提高性能。
1.量化相关知识
1.1量化技术
LLM大模型的量化技术主要是通过对模型参数进行压缩和量化,从而降低模型的存储和计算复杂度。具体来说如下:
1.参数压缩
通过将模型中的浮点数参数转换为低精度的整数参数,量化技术可以实现参数的压缩。这不仅可以减少模型所需的存储空间,还可以降低模型加载的时间。
2.计算加速
由于低精度整数运算的速度远快于浮点数运算,量化技术还可以通过降低计算复杂度来实现计算加速。这可以在保证模型性能的同时,提高模型的推理速度。
量化技术的目的:节省显存、加速计算、降低通讯量。它们往往不会同时在场,不同的应用场景下应当对症下药
1.2量化示例
模型量化是指以较低的推理精度损失将连续取值(通常为float32或者大量可能的离散值)的

最低0.47元/天 解锁文章


被折叠的 条评论
为什么被折叠?



