一、定义
机器学习通常分为传统机器学习(也称为经典机器学习)和深度学习两大类:
-
传统机器学习:
- 主要基于特征工程,即从数据中提取有意义的特征来进行建模。
- 包括算法如线性回归、逻辑回归、决策树、随机森林、支持向量机(SVM)、K近邻(KNN)、朴素贝叶斯等。
- 适用于结构化数据,比如表格数据。
- 需要人工设计特征,并且在大规模数据集上表现不如深度学习。
-
深度学习:
- 基于神经网络,特别是深度神经网络(DNN),可以自动从数据中学习特征。
- 包括卷积神经网络(CNN)、循环神经网络(RNN)、变压器(Transformer)等。
- 在图像处理、自然语言处理等任务上表现优异,尤其在大规模数据和复杂问题中。
- 不需要显式的特征工程,而是通过多层网络自动学习数据中的复杂模式。
深度学习是传统机器学习的一个子集,属于一种更加复杂和强大的学习方式。
二、区别
传统机器学习和深度学习是两种不同的机器学习范式,它们在多个方面存在差异。以下是一些主要的区别:
1. 数据量
- 传统机器学习:通常适用于中小规模的数据集。当数据量较少时,传统