历史惊人相似,微软Exchange出现2022版“千年虫”bug

微软Exchange服务器在2022年1月1日遭遇了类似“千年虫”的问题,由于日期变量溢出导致邮件发送失败。此问题仅影响配置了FIP-FS恶意软件引擎的Exchange 2016和2019版本。管理员已提供自动化和手动两种解决方案,包括删除旧引擎和更新到最新引擎。受影响的用户需根据指导进行修复以恢复邮件服务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前几天跨年的时候,相信不少人都在卡点送祝福。零点一过,大批的祝福通过各种服务器送出,因此服务器的稳定运行是非常必要的。然而就在这个关键时刻,微软Exchange服务器却出了岔子。不少Exchange服务器的用户发现自己的祝福邮件没发出去,被留在了2021年。

 Windows事件日志显示的错误提醒

Exchange Server是微软公司推出的一套电子邮件服务组件,可以被用来构架应用于企业、学校等团体机构的邮件系统。也可以用于开发工作流、知识管理系统、Web系统或者是其他消息系统。

话说程序员不是在写Bug就是在改Bug,就连新年也躲不过!Exchange管理员被迫紧急加班。

他们调查发现,造成邮件无法发送的原因是Microsoft Exchange采用的邮件过滤管理系统(FIP-FS),采用了一种名叫“yymmddHHMM”的有符号变量(Int32)来存储日期。但是,因为该变量最多只能存储-2,147,483,647到+2,147,483,647的数据,而2022年1月1日午夜的新日期值为2,201,010,001,超过了这个范围。所以,当Microsoft Exchange尝试检查AV扫描版本时,它生成了一个错误并导致恶意软件引擎崩溃,信息就被卡在了传输队列中。

巧的是,这次微软日期bug事件与2000年的“千年虫(Y2K)”问题如出一辙࿰

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰山406

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值