异构计算卡DCU平台部署qwen2.5-instruct-7B

1.DCU 介绍

DCU(Deep Computing Unit 深度计算器)是 海光(HYGON)推出的一款专门用于 AI 人工智能和深度学习的加速卡。DCU也可以应用于密集型数值计算。例如:DCU Z100 32GB HBM2 PCIE 4.0 x16国产通用GPU卡* 2支持ECC,单块GPU卡显存32GB HBM2,FP64 10.8TFlops,通用计算核心8192。

2.基础环境

8K100 64GB 2Hygon C86 7380 32 Cores 1TB Memory

Ubuntu 22.04.1 DCU driver: rock-5.2.0-5.16.29-V01.13 DTK 23.10.1

3.Docker部署

使用xinference作为推理后台进行部署,拉取部署镜像

docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:vllm0.5.0-dtk24.04.1-ubuntu20.04-py310-zk-v1

运行镜像并进入容器内部

docker run -it --name transformers --privileged --shm-size=256G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video

-v /opt/hyhal:/opt/hyhal

-v /home//env/model:/home/env/model   ///模型映射文件

 762690254610 /bin/bash

安装xinference并使用vllm作为推理引擎

pip install "xinference[vllm]" -i https://pypi.mirrors.ustc.edu.cn/simple

启动xinference并运行qwen2.5-instruct-7B

XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0
xinference launch --model-engine vLLM --model-name qwen2.5-instruct --size-in-billions 7 --model-format pytorch --gpu-idx 0,1,2,3

### 海光 DCU K100 的硬件规格与性能参数 海光 DCU K100 是一款高性能的数据中心加速,主要面向人工智能训练和推理任务。其设计目标是在大规模并行计算领域提供卓越的性能表现。以下是关于该产品的具体信息: #### 硬件规格 - **制程工艺**: 使用先进的制造技术,确保低功耗的同时提升运算效率[^3]。 - **核心数量**: 配备大量计算单元,能够支持高并发的任务处理需求。 - **显存配置**: 提供高达 40GB 的高速 HBM 显存,满足大型模型对于内存的需求[^1]。 #### 性能参数 - **浮点运算能力**: 支持 FP16 和 INT8 数据类型下的高效矩阵乘法操作,在深度学习框架中有显著优势。 - **带宽指标**: 内部互联结构经过优化,具备极高的数据传输速率,减少瓶颈效应的发生概率。 - **能耗管理**: 功率控制机制完善,能够在不同负载条件下维持稳定运行状态。 #### 应用场景 得益于上述特点,海光 DCU K100 广泛应用于以下几个方面: - **自然语言处理(NLP)**: 对超大规模预训练语言模型进行微调时表现出色,例如 Qwen 系列中的多个版本均推荐搭配此款设备使用。 - **计算机视觉(CV)**: 实现图像分类、对象检测等功能所需的复杂算法加速。 - **科学计算**: 解决偏微分方程数值求解等问题所需的大规模线性代数运算。 ```python import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YourModel().to(device) if device == 'cuda': print(f"Using GPU with {torch.cuda.get_device_name(0)}") else: print("No compatible GPU found.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值