RC滤波电路工作原理:【带图+公式计算】

在电路中我们经常看到这样的一阶RC电路,它有什么作用呢?实际上R和C组成了一个一阶RC低通滤波器。有输出端来看,有助于消除输出入ui引入的高频杂波。从而实现一个低通的特性。

R:首先好理解,DC和AC都能通过,并起阻碍作用,我们称其为阻抗

C:仅能通过AC,并对AC起阻碍作用,我们称其为容抗,用Xc 表示

Xc = 1/(ωC)= 1/(2πfC)

容抗Xc和电容C成反比,和频率f也成反比,C越大,交流电容易通过电容,说明电容量大,电容的阻碍作用小;交流电的频率高,交流电也容易通过电容,说明频率高,电容的阻碍作用也小。

举例:

一个频率为1Khz的信号,通过一个容值为0.1uf的电容,计算电容对该信号产生的阻抗

Xc=1/2π*1*1000*0.1*10^-6=1592Ω

如果是10Khz的信号

Xc=1/2π*10*1000*0.1*10^-6=159Ω

如果是100Khz的信号

Xc=1/2π*100*1000*0.1*10^-6=15Ω

可见其它不变的情况下,频率越高容抗越小

现在我们,将电阻R和电容C组成一个RC滤波电路;

1:设输入信号为Vin,输入信号经过RC滤波电路后,输出信号为Vout。

2:通过RC滤波电路图,电阻和电容组成一个分压电路,Vout为电容上的电压值。

Vout = Vin * Xc/(R+Xc)    ------(公式1)

从公式1可以看到,Xc越大,Vout值就越接近Vin的值。

例如一个直流信号,里面混杂100KHz和1MHz纹波信号。

将RC滤波器电路中的电阻,取值为1KΩ,电容取值为0.47uf,纹波幅值为2V。

Xc=1/2π*100*1000*0.47*10^-6=3.3Ω      (100khz容抗)

Xc=1/2π*1000*1000*0.47*10^-6=0.33Ω     (1Mhz容抗)

Vout = Vin*Xc/(R+Xc)=2*0.33/(1000+0.33)=0.006V    (100khz电容分压)

Vout = Vin*Xc/(R+Xc)=2*0.33/(1000+0.33)=0.0006V  (1Mkhz电容分压)

我们可以看到,一个2V的纹波,经常RC电路后,幅值下降到mv级别,基本可以忽略不计,这就是RC滤波电路的工作原理。

### T型RC滤波电路的设计与工作原理 #### 工作原理 T型RC滤波电路是一种常见的无源滤波器结构,其形式类似于字母"T"。该电路由两个电阻(R1, R2)和一个电容(C)组成,其中电容位于中间位置,而两个电阻分别连接在输入端和输出端。当信号通过这样的配置时,高频成分会在经过电容器时被旁路至地,从而实现对特定频段的有效衰减[^1]。 对于T型网络而言,它能够有效地抑制不需要的频率范围内的噪声或者干扰信号,并允许所需频率顺利通过。具体来说,在低通应用中,较低频率的交流电压几乎不受影响地传递给负载;而对于高于截止频率(f_c)的部分,则会因为阻抗特性变化而导致较大程度上的削弱效果[^4]。 #### 设计方法 设计T型RC滤波器主要涉及以下几个参数的选择: - **时间常数 (τ)**:这是决定滤波特性的关键因素之一,等于电阻值乘以电容量(τ=R*C),用于定义过渡宽以及响应速度。 - **截止频率(fc)**:指半功率点处对应的角频率ωc=1/(R*C),即|H(jω)|²下降到最大增益的一半的位置所对应的实际物理意义下的频率值。此频率决定了哪些频率会被显著削减,哪些则能较好保持原样传输过去[^5]。 为了构建理想的T型拓扑结构,工程师们还需要考虑实际元件的理想化假设偏差、温度系数等因素的影响,确保最终产品满足预期性能指标的同时具备良好的稳定性和可靠性[^3]。 ```python import numpy as np from scipy import signal def t_type_rc_low_pass_filter(freqs, R1, R2, C): """ 计算T型RC低通滤波器的频率响应 参数: freqs : 频率数组 R1, R2: 电阻值(欧姆) C : 电容值(法拉) 返回: mag : 幅度响应 phase : 相位响应 """ w = 2 * np.pi * freqs Zc = 1 / (w * C) H = ((Zc)/(np.sqrt((R1*R2)+pow(Zc,2)))) mag = abs(H) phase = np.angle(H) return mag, phase freqs = np.logspace(-1, 6, num=700) mag, phase = t_type_rc_low_pass_filter(freqs, 1e3, 1e3, 1e-6) plt.figure(figsize=(8, 6)) plt.semilogx(freqs, 20*np.log10(mag)) # 转换成dB单位绘制幅度谱 plt.grid(True) plt.xlabel('Frequency [Hz]') plt.ylabel('|H(jω)| [dB]') plt.title('Magnitude Response of a T-Type RC Low-Pass Filter') plt.show() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DevinLGT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值