用LangSmith实施LLM模型评估(1)

以下内容是对langchain团队制作的langsmith系列视频的翻译总结,原视频可在油管上查看

🌟 评估介绍及其在LangSmith中的应用 🌟

近几周和几个月以来,我们注意到用户们对评估表现出了高度的兴趣。因此,我们想开启一个简短的系列,阐述如何从零开始思考评估,并如何通过使用LangSmith自行实施评估。当像Cloud3这样的新模型发布时,你经常会看到许多公开的评估报告。例如,这是Claude 3展示了各种不同的评估结果,并将它们与其他流行的LLMs进行了比较。

image.png

你也可能见过像Chatbot arena这样的平台,现在它的榜首是Cloud3 opus。

image.png

但问题在于,这些评估是什么,应该如何思考它们,我又该如何自行实施它们呢?

🤔 如何思考评估

评估可以被分解为四个部分。首先,有一个数据集,其次是某种评估者,接着是一个任务,最后是解释结果的手段。让我们通过观察一下在这些公共模型上运行的各种评估来具体了解。

image.png

📈 OpenAI的一个好例子-“标准答案”(Ground Truth)

  • 2021年,OpenAI发布了一个包含165个编程问题的数据集,主要与Code generation任务相关。评估方法在这里可以从两个角度来看:评判者和评估方式。在这个例子中,评估方式是以每个编码问题的“正确答案”为基准的,通过某种程序化的方式(如单元测试)来指定正确性。结果通常以条形图的形式报告。

🤖 Chatbot Arena的比较实例-“人工评估”(Human Eval)

  • 在Chatbot Arena的案例中,实际上没有静态数据集。这是通过用户互动动态生成的。用户被呈现两个不同的LLMs,他们对两者都进行提示,并选择他们更喜欢的响应。在这种情况下,评判者是人类,而评估模式不是基于固定真理的,而是比较性评估。在指标方面,他们经常报告这些对比图,基本上展示了一个模型与所有其他模型的比较,并且统计数据告诉你一个模型打败另一个模型的可能性。
    image.png

🛠 构建个性化测试和评估

我们看到了对个性化测试和评估的兴趣。例如,尽管有数百种公共基准,人们还是想要构建自己的基准来测试模型。在考虑数据集时,有一些类别,比如人为策划的(如人工评估)、从生产应用中收集的用户互动,以及使用LLMs合成地生成数据集。

🔍 评估的不同形式

  • 在评估方面,我们看到了使用人类作为评判者的例子,使用单元测试或启发式方法针对正确的代码解决方案进行评判,以及使用LLMs作为评判者。这些评判者可以针对一般标准进行评判,考虑到没有固定的参考答案,但可以让LLM评估不同的方面,例如简洁性。
  • 最后,这些通常如何被应用?可以考虑几个类别,如单元测试、评估和A/B测试。单元测试是软件工程中常规和简单的功能断言。A/B测试是一种比较性评估,回归测试则关注随时间的变化或实验性测试评估不同的参数。

🚀 如何开始 - 引入LangSmith

LangSmith提供了UI和SDK来构建数据集、版本管理、编辑以及定义你自己的评估者或实现/使用自定义评估者。

我们将在接下来的视频中详细讨论这些概念,让你从零开始掌握构建自己的评估方法。重要的是,LangSmith并不要求使用LangChain,但当然,你也可以将其与LangChain配合使用。

在接下来的视频中,我们将仔细研究每个部分,逐步建立从头开始构建自己的评估的理解。感谢大家观看!

### 如何使用LangSmith追踪大型语言模型的效果和性能 #### 安装与配置 为了开始使用LangSmith,需先安装相应的SDK。对于Python环境而言,可以通过pip命令完成安装: ```bash pip install langsmith ``` 随后,在代码中引入必要的模块并初始化客户端实例[^2]。 #### 初始化连接 创建一个到LangSmith服务端的会话链接,通常这涉及到API密钥以及目标服务器地址的指定。下面是一个简单的例子来展示如何设置这个连接: ```python from langsmith import Client client = Client(api_key="your_api_key", base_url="https://api.langsmith.io") ``` #### 记录交互日志 每次当有新的请求发送给LLM时,应该调用`log()`方法向LangSmith提交这次互动的信息。这些信息可能包括但不限于输入文本、输出结果以及其他上下文参数。这样做有助于后续分析具体的对话流程及其产生的影响[^1]。 ```python response = llm.generate(text_input) # 将交互细节记录下来供以后审查 client.log( input=text_input, output=response.text, metadata={"model_version": "v1.0"} ) ``` #### 获取性能指标 利用LangSmith提供的统计接口查询特定时间段内的各项性能指数,比如平均响应时间、成功率等。这对于评估系统整体健康状况至关重要[^3]。 ```python metrics = client.get_metrics(start_date="2023-09-01", end_date="2023-09-30") for metric, value in metrics.items(): print(f"{metric}: {value}") ``` #### 可视化数据分析 除了基本的数据检索外,还可以借助内置或第三方图表库绘制趋势图、分布直方图等形式直观呈现历史表现模式,便于识别异常波动点或是长期发展趋势。 ```python import matplotlib.pyplot as plt plt.plot(metrics['dates'], metrics['avg_response_time']) plt.title('Average Response Time Over Time') plt.xlabel('Date') plt.ylabel('Response Time (ms)') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值