【图像处理】形态处理(Matlab实现)

本文介绍了形态处理在图像处理中的关键作用,包括腐蚀、膨胀、开运算和闭运算,以及它们在边缘检测、特征提取和图像分割中的应用。通过Matlab代码展示了如何对图像进行形态学操作,如在OpeningbyReconstruction示例中的应用。
摘要由CSDN通过智能技术生成

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

形态处理在图像处理领域发挥着重要作用,通过对图像进行形态学操作,可以实现多种图像处理任务。其中,腐蚀操作可以用于去除图像中的细小物体或者减小物体的尺寸,而膨胀操作则可以用来填充图像中的空洞或者增加物体的尺寸。开运算结合了腐蚀和膨胀操作,可以平滑物体的边缘并消除细小的噪声点,闭运算则可以连接物体的断裂部分并填充物体的凹陷区域。形态处理还可以用于提取图像中的特征,如边缘、角点等,从而实现图像分割和目标识别。形态处理技术的应用领域包括医学图像处理、自动化检测、机器视觉等,为图像处理领域的发展提供了重要的工具和方法。

📚2 运行结果

主函数部分代码:

clc; clear;
%% Read the original image
fig29 = imread('data/Fig0929(a)(text_image).tif');
imwrite(fig29, 'data/fig29.png');
fig31 = imread('data/Fig0931(a)(text_image).tif');
imwrite(fig31, 'data/fig31.png');

%% Opening by reconstruction
figure('Name', 'Opening by reconstruction');
subplot(2, 2, 1);
imshow(fig29, []);

% Erode
subplot(2, 2, 2);
erode_29 = erode(fig29, ones(51, 1));
imshow(erode_29, []);
imwrite(erode_29, 'data/erode_29.png');

% Opening
subplot(2, 2, 3);
opening_29 = dilate(erode_29, ones(51, 1));
imshow(opening_29, []);
imwrite(opening_29, 'data/opening_29.png');

% Reconstruction
subplot(2, 2, 4);
reconstruct29 = geodesic_dilation(opening_29, fig29);
imshow(reconstruct29, []);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王非凡,陈希爱,任卫红等.基于图像自适应增强的低照度目标检测算法[J/OL].计算机工程:1-13[2024-03-11].https://doi.org/10.19678/j.issn.1000-3428.0068407.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值