基于多元相关-时空图神经网络的短期居住负荷预测研究(Python代码+数据)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1. 研究背景

2. 多元相关性

3. 时空图神经网络

4. 研究方法与挑战

5. 应用前景

📚2 运行结果

🎉3 参考文献

🌈4 Python代码及数据


💥1 概述

摘要:居住负荷预测在电力系统的高效运营和规划中起着至关重要的作用。本研究提出了一种基于多元相关-时空图神经网络(MCT-GNN)的短期居住负荷预测方案。MCT-GNN模型利用图神经网络和多元相关学习捕捉居住负荷数据中复杂的时空相关性。该方案在真实居住负荷数据集上进行了评估,结果表明它在准确性和鲁棒性方面优于传统的预测方法。MCT-GNN模型在短期居住负荷预测应用方面具有良好的潜力,并可以为智能电网技术的发展做出贡献。

短期居住负荷预测是城市能源管理和规划中的重要问题,而多元相关-时空图神经网络是一种强大的预测模型,可以有效地处理时空数据。本研究旨在基于多元相关-时空图神经网络,对短期居住负荷进行准确预测。

首先,我们将收集城市中不同居住区域的能源消耗数据,并结合时空信息,构建多元相关的数据集。然后,我们将设计一个时空图神经网络模型,以捕捉不同区域之间的时空关联性,并结合多元相关分析,提高模型的预测能力。

在模型训练阶段,我们将利用历史数据对模型进行训练,并结合交叉验证等方法对模型进行验证和调优。最后,我们将使用测试数据对模型进行评估,并与其他常用的预测模型进行比较分析,以验证多元相关-时空图神经网络在短期居住负荷预测中的有效性和优越性。

通过本研究,我们期望能够为城市能源管理和规划提供一种有效的短期居住负荷预测方法,为城市能源消耗的合理调度和规划提供科学依据。

短期居住负荷预测是一个重要的研究领域,它涉及到电力系统运行、能源管理及智能家居等多个方面。采用“多元相关-时空图神经网络”(Multivariate Correlation - Spatio-Temporal Graph Neural Networks, 简称MCGNN)进行研究,旨在通过整合时间序列数据与空间依赖性,提高预测准确性。下面是对这一研究方向的简要解析:

1. 研究背景

随着智能电网的发展和居民用电需求的多样化,准确预测短期居住负荷对于电力供需平衡、资源配置及节能减排等方面至关重要。传统的负荷预测方法主要基于时间序列分析,忽略了个用户之间的空间相互作用以及多因素(如天气、节假日等)的共同影响。因此,结合空间信息与多元因素的相关性,发展更先进的预测模型成为研究热点。

2. 多元相关性

  • 定义:多元相关性指的是在负荷预测中考虑多种因素(如气象条件、经济指标、社会活动模式等)与负荷之间的相互关系。通过分析这些变量与负荷变化的关联,可以提升预测模型的解释力和精度。

  • 应用:利用多元统计分析技术,识别并量化不同变量对负荷的影响程度,作为模型输入特征,增强预测模型的泛化能力。

3. 时空图神经网络

  • 基本概念:时空图神经网络是一种结合了图神经网络(处理空间相关性)和循环神经网络/Transformer(处理时间序列数据)的深度学习模型。它能够有效捕获电网节点间的时空依赖关系,特别是对于具有复杂拓扑结构的电力系统。

  • 关键组件

    • 时空编码:利用时间序列数据进行时序建模,同时构建电网用户或区域之间的空间图结构,通过图卷积操作学习节点间的依赖关系。
    • 多变量融合:集成多元相关变量信息,通过注意力机制或其他策略分配不同因素对负荷影响的权重。

4. 研究方法与挑战

  • 方法:MCGNN通常包括数据预处理(构建时空图、整合多源数据)、模型构建(设计图神经网络结构以融合时空信息)、训练与优化(利用历史数据进行训练,调整模型参数以最小化预测误差)及性能评估等步骤。

  • 挑战:如何有效整合异构数据、解决高维度数据带来的计算复杂度问题、保证模型的泛化能力及解释性是主要挑战。

5. 应用前景

成功实施MCGNN预测模型,不仅可以提高居住区负荷预测的准确性,还能助力智慧能源系统的精细化管理和优化调度,实现能源高效利用和可持续发展。此外,该模型的应用还有助于电力公司进行需求响应、负荷调度等方面的决策支持。

总之,基于多元相关-时空图神经网络的短期居住负荷预测,是电力系统智能化发展的前沿方向,通过深入研究,有望为未来的能源管理和电网运营提供更加精准、高效的解决方案。

📚2 运行结果

rmse, mae = [], []

predicted_load = model.predict([testX, ad12, ad22])
predicted_load = predicted_load * (max_value-min_value)+min_value
predicted_load[predicted_load < 0] = 0
var = pd.DataFrame(predicted_load)
var.to_csv(r'/results/predicted load.csv', index=False, header=False)
real_load = testY * (max_value-min_value)+min_value
var2 = pd.DataFrame(real_load)
var2.to_csv(r'/results/real load.csv', index=False, header=False)

print(np.shape(predicted_load))
print(np.shape(real_load))
for i in range(20):
    rmse.append(math.sqrt(mean_squared_error(predicted_load[:, i], real_load[:, i])))
    mae.append(mean_absolute_error(predicted_load[:, i], real_load[:, i]))

print(rmse)
print(mae)

print("-------------------------------------------------------------------")
print("Root Mean Square Error:" + str(mean(rmse)))
print("Mean Absolute Error:" + str(mean(mae)))

plt.plot(real_load[:, 0], color='red', label='real_load')
plt.plot(predicted_load[:, 0], color='blue', label='Predicted load')
plt.title('load Prediction')
plt.xlabel('Time')
plt.ylabel('load')
plt.legend()
plt.savefig('/results/curve.png')
plt.show()

运行结果及数据:

rmse, mae = [], []

predicted_load = model.predict([testX, ad12, ad22])
predicted_load = predicted_load * (max_value-min_value)+min_value
predicted_load[predicted_load < 0] = 0
var = pd.DataFrame(predicted_load)
var.to_csv(r'/results/predicted load.csv', index=False, header=False)
real_load = testY * (max_value-min_value)+min_value
var2 = pd.DataFrame(real_load)
var2.to_csv(r'/results/real load.csv', index=False, header=False)

print(np.shape(predicted_load))
print(np.shape(real_load))
for i in range(20):
    rmse.append(math.sqrt(mean_squared_error(predicted_load[:, i], real_load[:, i])))
    mae.append(mean_absolute_error(predicted_load[:, i], real_load[:, i]))

print(rmse)
print(mae)

print("-------------------------------------------------------------------")
print("Root Mean Square Error:" + str(mean(rmse)))
print("Mean Absolute Error:" + str(mean(mae)))

plt.plot(real_load[:, 0], color='red', label='real_load')
plt.plot(predicted_load[:, 0], color='blue', label='Predicted load')
plt.title('load Prediction')
plt.xlabel('Time')
plt.ylabel('load')
plt.legend()
plt.savefig('/results/curve.png')
plt.show()

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] Lin W , Wu D , Boulet B .Spatial-Temporal Residential Short-Term Load Forecasting via Graph Neural Networks[J].IEEE transactions on smart grid, 2021(12-6).DOI:10.1109/TSG.2021.3093515.

[2] Peng Q , Liu Z W .Short-Term Residential Load Forecasting Based on Smart Meter Data Using Temporal Convolutional Networks[C]//2020 39th Chinese Control Conference (CCC).0[2023-11-09].DOI:10.23919/CCC50068.2020.9188453.

🌈4 Python代码及数据

  • 19
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值