【OFDM中采用选择性映射技术的PAPR降低】用于比较传统的OFDM实现和一种经过修改的OFDM系统,这种修改后的OFDM系统采用了选择性映射技术来降低峰均功率比(PAPR)研究(Matlab代码)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、传统OFDM系统的PAPR问题

1. PAPR产生机制

3. 量化指标

二、基于SLM的修改型OFDM系统(A3)

1. SLM技术原理

2. 关键改进方案

3. 性能对比

4. 复杂度优化效果

三、综合对比与局限性

1. 优势

2. 局限性

四、研究趋势与建议

五、总结

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

用于比较传统的OFDM实现和一种经过修改的OFDM系统。这种修改后的OFDM系统采用了选择性映射技术来降低峰均功率比(PAPR)。实现的OFDM系统包含256个子载波,其中前16个子载波携带64-QAM符号。为了比较OFDM系统和单载波系统的性能,进行了误码率(BER)曲线和互补累积分布函数(CCDF)曲线的绘制。通过选择性映射技术设计了一种改进的OFDM系统,以降低传统OFDM系统的峰均功率比。CCDF曲线用于比较改进后的OFDM系统和传统OFDM系统的性能。

以下是对传统OFDM系统(A1)与基于选择性映射技术(SLM)的修改型OFDM系统(A3)在PAPR性能、实现复杂度及系统影响方面的详细对比分析:


一、传统OFDM系统的PAPR问题

1. PAPR产生机制

  • 实例:512个子载波的BPSK-OFDM系统,PAPR可达27 dB。
  • 2. 高PAPR的影响
  • 功率放大器非线性失真:信号超出放大器线性范围时,产生交调失真和带外辐射。
  • 效率与寿命:放大器需回退至线性区工作,导致效率下降(典型效率<30%)和电池寿命缩短。
  • 频谱效率损失:为抑制失真,需预留更大功率裕度,降低有效传输功率。
3. 量化指标
  • CCDF(互补累积分布函数) :传统OFDM在N=64N=64时,CCDF=10⁻³对应的PAPR约为10-12 dB。

二、基于SLM的修改型OFDM系统(A3)

1. SLM技术原理
  • 核心思想:生成多组候选信号,选择PAPR最低的一路传输。通过相位旋转向量B(u)=[ejϕ0(u),...,ejϕN−1(u)]B(u)=[ejϕ0(u)​,...,ejϕN−1(u)​]对频域符号XX进行加权,生成UU个候选信号s(u)=IFFT(X⊙B(u))s(u)=IFFT(X⊙B(u))。
  • 改进方向:降低计算复杂度(如减少IFFT次数)或提升候选信号多样性。
2. 关键改进方案
  • 时间域子块转换矩阵(TSCM-SLM)
    • 将频域信号划分为多个子块,每个子块独立应用相位旋转,增加候选信号数量。例如,4子块方案可将候选信号从12扩展至128组。
    • 优势:在相同IFFT次数下,PAPR降低效果提升1-2 dB。
  • 混合SLM与压扩技术
    • 结合SLM的相位优化与压扩技术的非线性变换,在保持BER性能的同时,进一步降低PAPR。实验显示,混合方案比纯SLM降低PAPR 0.5-1 dB。
  • 遗传算法优化(GA-SLM)
    • 通过遗传算法搜索最优相位组合,减少穷举计算量。复杂度降低50%以上,但PAPR性能略逊于传统SLM。
3. 性能对比
指标传统OFDM(A1)传统SLM修改型SLM(A3)
PAPR(CCDF=10⁻³)10-12 dB(N=64)8-10 dB(U=4)7.59 dB(U=4, TSCM-SLM)
计算复杂度1次IFFTU次IFFT1次IFFT + 相位转换矩阵
BER(AWGN, SNR=15dB)10⁻⁴10⁻⁴(需边信息恢复)10⁻⁴(无额外损失)
频谱效率损失边信息占用带宽(≈1%)边信息压缩或嵌入优化
4. 复杂度优化效果
  • IFFT次数减少:传统SLM需UU次IFFT,而改进方案(如TSCM-SLM)仅需1次IFFT,复杂度降低63.5%(N=2048N=2048, U=4U=4)。
  • 相位序列设计:采用完美序列(Perfect Sequence)或循环移位结构,减少乘法运算量。

三、综合对比与局限性

1. 优势
  • PAPR降低显著:改进SLM在N=64N=64时,PAPR较传统OFDM降低3.9 dB,较传统SLM降低0.6 dB。
  • 兼容性:无需修改接收机结构,适用于现有OFDM标准(如LTE、5G)。
  • BER无损失:通过边信息优化(如循环移位嵌入),BER性能与原始OFDM相当。
2. 局限性
  • 边信息传输:传统SLM需传输相位序列索引,占用额外带宽。盲SLM方案可规避此问题,但复杂度增加。
  • 高阶调制影响:在16-QAM及以上调制中,PAPR降低效果减弱,需结合预编码或星座整形。

四、研究趋势与建议

  1. 联合优化方案:将SLM与压扩、编码技术结合,平衡PAPR、BER和频谱效率。
  2. 硬件实现:基于FPGA的实时SLM方案需优化并行计算架构,降低处理延迟。
  3. 机器学习辅助:利用神经网络生成最优相位序列,减少计算量并提升PAPR性能。

五、总结

基于SLM的修改型OFDM系统在PAPR性能上显著优于传统方案,且通过算法优化有效降低了计算复杂度。未来研究需进一步解决边信息传输和高阶调制下的性能瓶颈,以满足5G/6G系统对高频谱效率和低功耗的需求。

📚2 运行结果

部分代码:

%% Declaring OFDM System Properties
M = 64;                        % 64-QAM constellation
k = log2(M);                   % number of bits per symbol
N = k*2^16;                    % number of binary sequence
num_sc = 256;                  % Number of Subcarrier
num_dsc = 16;                  % Number of data subcarrier
block_size = N/(num_dsc*k);    % number of symbols per subcarrier
cp_len = 64;                   % length of cyclic prefix

%% Transmitter side
ran = RandStream('swb2712');
input1 = randsrc(1,N,[0,1],ran);   % Binary Sequence
input = qammod(input1',M,'gray','InputType','bit','UnitAveragePower',true); %64QAM Modulation
% Allocating the 64QAM Symbol to data subcarrier
data_matrix = reshape(input, block_size, num_dsc);   
% ifft to generate 256 subcarriers
ifft_data_matrix = ifft(data_matrix',num_sc)';
% Compute and append Cyclic Prefix
cp_start = block_size-cp_len+1;
actual_cp = ifft_data_matrix(cp_start:end,:);
ifft_data = [actual_cp;ifft_data_matrix];
% Convert parallel to serial for transmission
[rows_ifft_data, cols_ifft_data]=size(ifft_data);
len_ofdm_data = rows_ifft_data*cols_ifft_data;
ofdm_signal = reshape(ifft_data, 1, len_ofdm_data); % Actual OFDM signal to be transmitted

%% Channel
EbNo = [-10:20]; % Eb/No 
errors=zeros(size(EbNo));
for ii = 1:length(EbNo)
snrdB = EbNo(ii) + 10*log10(k);  %Conver Eb/No to snr in dB
s = 1/sqrt(mean(abs(ofdm_signal).^2)); % Normalizer
n = 1/sqrt(2)*(randn(1,len_ofdm_data) + 1i*randn(1,len_ofdm_data)); % normalized guassian noise
% Pass the ofdm signal through the channel
recvd_signal = s*ofdm_signal+10^(-snrdB/20)*n; % linear AWGN

%% Receiver side
% Convert Data back to "parallel" form to perform FFT
recvd_signal_matrix = reshape(recvd_signal,rows_ifft_data, cols_ifft_data);
% Remove CP
recvd_signal_matrix(1:cp_len,:)=[];
% Perform FFT
fft_data_matrix = fft(recvd_signal_matrix',num_sc)';
fft_data_matrix(:,num_dsc+1:end) = [];  %Extract Data Symbols
% Convert parallel to serial and Normalize
y = reshape(fft_data_matrix, 1,[]);

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]李万臣,李佑虎.基于SLM的减小OFDM系统PAPR的改进技术[J].通信技术, 2008, 41(012):122-124.

[2]杨娟.MIMO-OFDM系统中PAPR减小技术的研究[D].扬州大学[2025-02-18].

[3]黄平,张小龙.降低OFDM系统PAPR的选择性映射算法[J].华中科技大学学报:自然科学版, 2010(9):4.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值