基于粒子群和二进制遗传算法的热电联产经济调度研究(Python代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于粒子群与二进制遗传算法的热电联产经济调度研究综述

一、热电联产经济调度的核心问题

二、粒子群算法(PSO)的应用优势与案例

三、二进制遗传算法(BGA)的特点与实现

四、PSO与BGA的协同优化策略

五、多目标优化模型构建方法

六、挑战与未来研究方向

七、结论

📚2 运行结果

2.1 粒子群算法求解

2.2 二进制遗传算法求解

🎉3 参考文献

🌈4 Python代码实现


💥1 概述

热电联产是一种将热能和电能同时生产的能源利用方式,能够提高能源利用效率,减少能源消耗和排放。热电联产经济调度研究旨在通过优化热电联产系统的运行和经济调度,实现能源的高效利用和经济效益的最大化。

热电联产经济调度研究的内容包括对热电联产系统的运行模式、能源供需平衡、热电负荷预测、能源价格预测等方面的研究。通过建立数学模型和优化算法,对热电联产系统进行经济调度,使系统在满足能源需求的前提下,最大限度地提高能源利用效率和经济效益。

热电联产经济调度研究的目标是实现热电联产系统的节能减排和经济效益的双重提升。通过合理的经济调度,可以降低系统的运行成本,减少能源消耗和排放,提高系统的竞争力和可持续发展能力。

热电联产系统是一种能够同时生产电力和热能的能源系统,其经济调度对于提高能源利用效率和降低成本具有重要意义。本文基于粒子群算法和二进制遗传算法,对热电联产系统的经济调度问题展开研究。

首先,我们建立了热电联产系统的数学模型,包括热负荷、电负荷、燃料成本、运行成本等方面的约束条件和目标函数。然后,我们将粒子群算法和二进制遗传算法应用于该问题中,通过优化调度参数来实现系统的经济运行。

粒子群算法是一种基于群体智能的优化算法,通过模拟鸟群觅食的行为来寻找最优解。而二进制遗传算法则是一种模拟生物进化过程的优化算法,通过选择、交叉和变异等操作来不断优化种群的基因表达。将这两种算法结合起来,可以充分利用它们各自的优势,提高求解效率和精度。

通过对热电联产系统的经济调度问题进行仿真实验,我们可以评估粒子群算法和二进制遗传算法在该问题中的性能表现,并对比它们的优缺点。最终,我们可以得出结论,指导实际热电联产系统的经济调度决策,提高系统的经济效益和能源利用效率。

综上,热电联产经济调度研究是为了实现热电联产系统的高效运行和经济效益的最大化,是能源领域的重要研究方向之一。

基于粒子群与二进制遗传算法的热电联产经济调度研究综述

一、热电联产经济调度的核心问题

热电联产系统(Combined Heat and Power, CHP)需同时满足电力与热能的供需平衡,其经济调度需解决以下关键问题:

  1. 多目标冲突:需在燃料成本、污染物排放、能源效率等多目标间实现平衡(如提到总收益最大化与排放最小化的冲突)。
  2. 非线性与约束复杂性:系统模型具有非凸、非线性特性,需处理机组出力约束、热网传输延迟、可再生能源波动等(指出热网量调节模式下的非线性规划难题)。
  3. 灵活性不足:热电耦合机制导致调峰能力受限,难以高效消纳风电、光伏等新能源(强调弃风弃光现象)。
二、粒子群算法(PSO)的应用优势与案例
  1. 算法原理
    PSO模拟鸟群觅食行为,通过个体与群体最优解的交互更新粒子位置。改进策略包括:

    • 动态惯性权重(如通过调整权重平衡全局与局部搜索)。
    • 多目标优化框架:结合Pareto最优解集(的ABBMOPSO算法)。
  2. 典型应用场景

    • 微电网调度:展示PSO在储能充放电策略优化中的动态调整能力,提升经济性10%-15%。
    • 多目标优化:采用PSO求解CHP系统的最优电/热出力分配,燃料成本降低8.6%。
    • 大规模系统:的IEEE40节点案例验证PSO在复杂网络中的收敛效率。
三、二进制遗传算法(BGA)的特点与实现
  1. 编码与操作机制

    • 二进制编码:将连续变量离散化(如中编码精度与符号串长度的关系)。
    • 选择与变异:采用轮盘赌选择和随机突变维持种群多样性。
  2. 应用案例

    • 经济-排放协同优化:通过BGA优化输电损耗与排放目标,综合成本降低12%。
    • 故障定位:利用BGA优化配电系统故障电流计算,准确率提升至98%。
四、PSO与BGA的协同优化策略
  1. 混合算法设计

    • 串行融合:如的GA-PSO混合算法,先用GA生成优质初始种群,再用PSO局部优化,计算时间减少30%。
    • 并行协作:在相控阵雷达调度中,PSO负责全局搜索,BGA处理约束,成功率提升25%。
  2. 性能对比

    • 收敛速度:显示,BGA在IEEE118节点系统上的执行时间(19.4秒)显著优于GA(54.6秒)。
    • 解质量:的多群体GA在13机组系统中,目标函数值较经典GA降低1.5%。
五、多目标优化模型构建方法
  1. 目标函数设计

    • 经济-环境权衡:以运行成本、碳排放率、能源效率为多目标,采用熵权法决策最优方案。
    • 市场机制融合:引入绿色证书成本,促进风电消纳率提升20%。
  2. 约束处理技术

    • 罚函数法:将热平衡约束转化为罚函数,简化模型复杂度。
    • 模糊机会约束:处理风电不确定性,通过模糊理论转换机会约束为显式条件。
六、挑战与未来研究方向
  1. 动态模型构建:需考虑可再生能源的实时波动(提出的鲁棒优化需求)。
  2. 算法融合创新:如的双层混合算法(GA-PSO-EMA)在电容器配置中的潜力。
  3. 能-信息耦合:强调需开发数据驱动与物理模型结合的分布式优化框架。
七、结论

粒子群算法与二进制遗传算法在热电联产经济调度中各具优势:PSO适用于快速全局搜索,而BGA擅长处理离散约束。通过混合策略(如串行/并行协同),可显著提升解的质量与效率。未来需进一步结合动态建模、多市场机制及新型智能算法(如量子PSO),以实现更高效、低碳的热电联产系统运行。

📚2 运行结果

2.1 粒子群算法求解

2.2 二进制遗传算法求解

部分代码:

#~~~~~~~~~~~~~不等式惩罚项2~~~~~~~~~~~~~~~~~~~~~·
def calc_e2(self, X):
    """
    :param X:  十十进制格式 X[0] 机组1出力,X[1] 机组2出力 ;X[2]机组3出力,X[3]机组2产热,x[4]机组3产热,X[5]机组4产热
    :return:
    """
    ee = 0
    """机组2发电区间"""
    PG2max = (11115 - 8 * X[3]) / 45  # 机组2P出力上限
    PG2min = np.max([(-2886120 + 134 * X[3]) / 75.2, (10354.24 - 17.8 * X[3]) / 104.8])  # 机组2P出力下限
    if  PG2min > PG2max:  # 如果机组2出力上下限约束条件违法
        ee += np.abs(PG2min - PG2max)
    """机组2发热区间"""
    HG2max = np.min([(11115 - 45 * X[1]) / 8, np.abs((7952 - 75.2 * X[1]) / 134)])  # 机组2出热最大值
    HG2min = 0  # 机组2出热最小值
    if HG2max < HG2min:
        ee += np.abs(HG2max - HG2min)
    """机组3发电区间"""
    PG3max = np.min([(125.8), (13488 - 15.6 * X[4]) / 103.2])  # 机组3出力上限
    PG3min = np.max([(-2841 + 70.2 * X[4]) / 60.6, (2664 - 4 * X[4]) / 59.1, 44])  # 机组3出力下限
    if PG3min < 0 or PG3max < 0 or PG3min > PG3max:  # 如果机组3出力上下限约束条件违法
        ee += np.abs(PG3min - PG3max)
    """机组3发热区间"""
    HG3max = np.min([(13488 - 103.2 * X[2]) / 15.6, (2841 - 60.6 * X[2]) / 70.2])  # 机组3出热上限
    HG3min = 0  # 机组3出热下限
    if HG3max < HG3min:
        ee += np.abs(HG3max - HG3min)
    return np.abs(ee)

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]孙海建.基于粒子群算法和遗传算法的频谱分配研究[D].吉林大学[2024-01-13].DOI:CNKI:CDMD:2.1015.597771.

[2]方宏伟.基于多智能体纵横交叉算法的热电联产经济调度研究[D].广东工业大学[2024-01-13].

🌈4 Python代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值