二叉树(堆)的理解

【本文目录】

1.树概念及结构

2.二叉树概念及结构

3.二叉树顺序结构及实现

4.二叉树的遍历及二叉树常见问题


1.树概念及结构

         1.1树的概念 树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

有一个特殊的结点,称为根结点,根节点没有前驱结点

除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。

因此,树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构。

 1.2 树的相关概念

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6,D为1,F为3。

叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点。

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点 。

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点。

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点。

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6 。

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4。

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点 。

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙。

森林:由m(m>0)棵互不相交的树的集合称为森林;

1.3 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

 2.二叉树概念及结构

2.1概念 一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空。

2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

2.2 特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.4 二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)个结点。

2. 若规定根节点的层数为1,则深度为h的二叉树的总结点数是为2^h-1。

3. 对任何一棵二叉树, 如果度为0其叶结点个数为n , 度为2的分支结点个数为m ,则有 n=m+1。

4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,(h: 是log以2 为底,n+1为对数) 。

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有:

 1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点。

2. 若2i+1>=n否则无左孩子。

3. 若2i+2>=n否则无右孩子。

2.5 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1. 顺序存储 顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的会专门讲解。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树

 3.二叉树顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

3.2 堆的概念及结构

如果有一个关键码的集合K = { K0,k1 ,k2 ,k3…,kn-1 },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:ki< =k2*i+1 且 ki>=2*i+2 ) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质: 堆中某个节点的值总是不大于或不小于其父节点的值; 堆总是一棵完全二叉树。

3.3 堆的实现

3.2.1 堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整 成一个小堆。

向下调整算法有一个前提:左右子树必须是一个堆,才能调整。 

int array[] = {27,15,19,18,28,34,65,49,25,37};

3.2.2堆的创建

        下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算 法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的 子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6}; 

 

3.2.3 建堆时间复杂度

         因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的 就是近似值,多几个节点不影响最终结果):

建堆的时间复杂度O(N)

3.2.4

堆的插入 先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

void HeapPush(HP* php, HPDataType x)
{
	assert(php);

	// 扩容
	if (php->size == php->capacity)
	{
		int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType)*newCapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}

		php->a = tmp;
		php->capacity = newCapacity;
	}

	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size-1);
}

3.2.5 堆的删除

        删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调 整算法。

 
 

void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		// 确认child指向大的那个孩子
		if (child+1 < n && a[child+1] < a[child])
		{
			++child;
		}

		// 1、孩子大于父亲,交换,继续向下调整
		// 2、孩子小于父亲,则调整结束
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void HeapPop(HP* php)
{
	assert(php);
	assert(php->size > 0);

	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;

	AdjustDown(php->a, php->size, 0);
}


4.二叉树的遍历 

        二叉树的遍历是指按一定的次序访问树中的所有结点,使每个结点恰好被访问一次。其中,遍历次序保证了二叉树上每个结点均被访问一次且仅有一次。遍历是二叉树中经常要用到的一种操作。因为在实际应用中,常常需要按一定顺序对二叉树中的每个结点逐个地进行访问,然后对那些满足条件的结点进行处理。通过一次完整的遍历,可使二叉树中的结点信息由非线性排列变为某种意义上的线性序列。也就是说,遍历操作使非线性结构线性化。二叉树常用的遍历有先序(根)遍历、中序(根)遍历、后序(根)遍历和层次遍历。先序、中序、后序的区别在于访问根结点的顺序不同。
 

4.1先序(根)遍历

若二叉树非空则:

(1)访问根结点;

(2)先序遍历左子树

(3)先序遍历右子树

void PrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf(" NULL ");
		return;
	}
	printf(" %d ", root->data);
	PrevOrder(root->left );
	PrevOrder(root->right );

}

4.2中序遍历

若二叉树非空则:

(1)中序遍历左子树

(2)访问根结点

(3)中序遍历右子树

void InOrder(BTNode* root)
{

	if (root == NULL)
	{
		printf(" NULL ");
		return;
	}
	
	InOrder(root->left);
	printf(" %d ", root->data);
	InOrder(root->right);
	
}

4.3后序遍历

若二叉树非空则:

(1) 后序遍历左子树

(2)后序遍历右子树

(3)访问根结点;

void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf(" NULL ");
		return;
	}
	PostOrder(root->left);

	PostOrder(root->right);

	printf(" %d ", root->data);

}

4.4求二叉树的结点

 int size = 0;
void Treesize(BTNode* root)
{
	if (root == NULL)
		return;

	size++;
	Treesize(root->left);
	Treesize(root->right );
}


int Treesize(BTNode* root)
{
	return root == NULL ? 0 : Treesize(root->left) + Treesize(root->right) + 1;
}

4.5求树的叶子结点

int  TreeleafSize(BTNode* root)
{
	if (root == NULL)
	{
		
		return 0;
	}
	if (root->left == NULL&& root->right==NULL)
	{
		return 1;
	}
	
	return TreeleafSize(root->right) +TreeleafSize(root->left);

}

树的高度
 

int TreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;
	

	return	TreeHeight(root->right) > TreeHeight(root->left) ?
			TreeHeight(root->right) + 1 : TreeHeight(root->left) + 1;
}
int TreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;
	int leftHeight = TreeHeight(root->left);
	int rightHeight = TreeHeight(root->right);
	return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;


}

K层结点数

int TreeKLevesize(BTNode* root, int k)
{
	if (root == NULL)
		return 0;
	if (k == 0)
		return 1;
	return TreeKLevesize(root->left, k - 1) + TreeKLevesize(root->right, k - 1);

}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值