💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
感知器是一种简单的人工神经元模型,用于二分类任务。在感知器中,输入向量经过加权求和后,经过阈值函数输出一个二元值,表示所属类别。为了更好地理解感知器的工作原理,可以通过绘制感知器的输入向量和目标向量来进行研究。
1. **绘制要分类的矢量图**:
- 首先,确定你要进行的二分类任务,例如分辨两类点的空间分布。
- 在二维平面上绘制出这些点的分布,用不同的颜色或符号表示不同类别。
- 这些点的分布应该是线性可分的,这样感知器才能够正确地对它们进行分类。
2. **绘制感知器的输入矢量的目标向量**:
- 对于每一个输入向量,确定其对应的目标输出。
- 目标输出通常为二元值,表示输入向量所属的类别,可以用不同的颜色或符号表示。
- 根据感知器的训练目标,确定感知器对每个输入向量应该输出的目标向量。
3. **研究**:
- 比较感知器的输出与实际目标向量的差异,分析感知器的性能。
- 如果感知器无法正确分类所有的输入向量,可以尝试调整感知器的参数,如学习率或者初始化权重,重新训练感知器,直到达到较好的分类效果。
通过以上步骤,你可以更加直观地了解感知器是如何在给定的输入矢量上进行分类的,以及如何根据目标向量对其进行训练和优化。
📚2 运行结果
部分代码:
%标准BP算法
x=[1.24,1.27;1.36,1.74;1.38,1.64;1.38,1.82;1.38,1.90;
1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08;1.14,1.82;1.18,1.96;1.20,1.86;1.26,2.00
1.28,2.00;1.30,1.96];
y=[1 0;1 0;1 0;1 0;1 0;1 0;1 0;1 0;1 0;0 1;0 1;0 1;0 1;0 1;0 1]; %初始数据
[v,r,w,h,y_hat]=standard_BP(x,y,1,1e6);
V=[-2 2 -2 2];
P=[0.1 0.7 0.8 0.8 1.0 0.3 0.0 -0.3 -0.5 -1.5;1.2 1.8 1.6 0.6 0.8 0.5 0.2 0.8 -1.5 -1.3];
T=[1 1 1 0 0 1 1 1 0 0;0 0 0 0 0 1 1 1 1 1];
%取一数组限制坐标值的大小
plotpv(P,T,V);
%该函数用于在感知器向量图中绘制其要分类的矢量图
axis('equal'),
%令横坐标和纵坐标单位距离相等
title('Input Vector Graph'),
%命名图的标题
xlabel('p1'),
%命名横轴坐标
ylabel('p2'),
%命名纵轴坐标
plotpc(w',h');
%该函数用于绘制感知器的输入矢量的目标向量,即在plotpv中把最终的分界线画出来
x_k=[1.24 1.80;1.28 1.84;1.40 2.04];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]丛翀,吕宝粮.一种基于感知器的样本空间划分方法[J].计算机仿真, 2008, 25(2):5.DOI:10.3969/j.issn.1006-9348.2008.02.026.
[2]陆金桂,韦柳涛.多层神经网络BP算法的初步研究[J].计算机科学, 1993, 20(1):2.