【负荷预测】基于CEEMDAN-CNN-LSTM的负荷预测研究(Python代码实现)

                                       💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CEEMDAN-CNN-LSTM的负荷预测研究文档

1. 引言

负荷预测是智能电网和能源管理中的重要环节,其准确性直接影响到电力系统的稳定运行、电力调度以及经济效益。随着智能电网的发展,对负荷预测的精度要求越来越高。本文旨在探索基于CEEMDAN(自适应噪声完备集合经验模态分解)、CNN(卷积神经网络)和LSTM(长短期记忆网络)的负荷预测模型,通过综合利用这三种技术的优势,提高负荷预测的精度和稳定性。

2. 技术背景

2.1 CEEMDAN

CEEMDAN是一种用于时间序列分析的信号分解方法,它通过引入自适应噪声来克服传统EMD(经验模态分解)方法中的模态混叠问题。在负荷预测中,CEEMDAN可以将负荷序列分解为多个本征模态函数(IMF),这些IMF代表了不同频率成分的信号,有助于降低数据的复杂性和波动性。

2.2 CNN

CNN是一种具有卷积层和池化层的神经网络结构,擅长处理图像和时间序列数据中的局部特征。在负荷预测中,CNN可以对分解后的信号进行特征提取,提取出对负荷预测有用的空间特征。

2.3 LSTM

LSTM是RNN(循环神经网络)的一种变体,能够同时处理输入序列的正向和反向信息,从而捕捉序列中的长期依赖关系。在负荷预测中,LSTM可以利用负荷序列的历史数据,捕捉负荷随时间变化的趋势和规律,提高预测的准确性。

3. 模型构建

3.1 数据预处理

收集负荷数据及相关影响因素(如气象、日期类型等)数据。对数据进行清洗、特征提取和归一化等预处理操作,以消除噪声和量纲不一致的问题。

3.2 信号分解

使用CEEMDAN算法对负荷序列进行初次分解,得到多个IMF分量。这些分量代表了不同频率成分的信号,有助于后续的特征提取和建模。

3.3 特征提取

使用CNN对分解后的信号进行特征提取。CNN的卷积层和池化层能够捕捉信号中的局部特征,提取出对负荷预测有用的信息。

3.4 时序建模

将CNN提取的特征作为LSTM的输入,构建LSTM时序模型。LSTM能够利用历史数据捕捉负荷随时间变化的趋势和规律,提高预测的准确性。

3.5 模型训练与评估

使用训练集数据训练LSTM模型,通过调整模型参数以优化模型性能。采用交叉验证等方法评估模型的预测性能,并进行必要的参数调优。

4. 实验结果与分析

4.1 预测性能评估

使用测试集数据对训练好的模型进行预测,并采用均方根误差(RMSE)、平均绝对误差(MAE)等指标评估模型的预测性能。

4.2 结果展示

展示基于CEEMDAN-CNN-LSTM模型的负荷预测结果,包括预测值与实际值的对比图、误差分布等。

4.3 对比分析

与其他常用预测模型(如LSTM、ARIMA等)进行对比分析,展示本文模型的优越性。

5. 讨论

5.1 技术组合效果

分析CEEMDAN、CNN和LSTM在负荷预测中的具体作用及其组合效果。CEEMDAN的信号分解能力降低了数据的复杂性和波动性,CNN的特征提取能力提取了有用的空间特征,LSTM的时序建模能力捕捉了负荷随时间变化的趋势和规律。

5.2 参数设置影响

讨论不同参数设置对模型性能的影响,并提出改进建议。通过调整模型参数,可以进一步优化模型的预测性能。

6. 结论与展望

6.1 结论

总结基于CEEMDAN-CNN-LSTM的负荷预测模型的主要研究成果和优势。强调该模型在提高负荷预测精度和稳定性方面的有效性。

6.2 展望

提出未来研究的方向和可能的改进点,如探索更高效的算法优化方法、收集更多样化的数据源以提高模型的泛化能力等。

📚2 运行结果

部分代码:

table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典.

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]肖白,高文瑞.基于CEEMDAN-LSTM的空间负荷预测方法[J].电力自动化设备, 2023, 43(3):7.

[2]郭权杰.基于CEEMDAN-LSTM模型的短期负荷预测研究与应用[D].天津理工大学,2023.

[3]冯建强,宋昆仑.基于CEEMDAN-LSTM的桥梁变形时间序列预测研究[J].地理空间信息, 2023, 21(7):40-43.

[4]王清亮,代一凡,王旭东,等.基于ICEEMDAN-LSTM-BNN的短期光伏发电功率概率预测[J].西安科技大学学报, 2023, 43(3):593-602.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值