💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于BiGRU(双向门控循环单元)的风电功率预测研究是当前风电领域与深度学习技术结合的一个重要方向。这种方法结合了BiGRU在时间序列建模上的特长,旨在提高风电功率预测的准确性和稳定性。以下是对该研究的详细分析:
一、研究背景与意义
风能作为一种清洁、可再生的能源,其发电过程受多种因素影响,如风速、风向、温度等,导致风电功率具有显著的波动性和不确定性。准确的风电功率预测对于电力系统的调度、优化风电场的运行以及促进风电的并网消纳具有重要意义。BiGRU模型通过其独特的双向结构和门控机制,能够更全面地捕捉风电功率数据中的时序特征,提高预测精度。
二、BiGRU模型概述
BiGRU是RNN(循环神经网络)的一种变体,通过引入门控机制和双向结构,能够捕捉时序数据中的长期依赖关系,并同时考虑过去和未来的信息。在风电功率预测中,BiGRU能够利用风电功率序列的历史数据,结合风速、风向、温度等多变量输入,进行单步预测。
三、研究方法
基于BiGRU的风电功率预测研究通常包括以下几个步骤:
- 数据收集与预处理:
- 收集风电场的历史风速、风向、温度等气象数据以及相应的风电发电量数据。
- 对数据进行清洗、去噪、插值等预处理操作,以消除异常值和缺失值对预测结果的影响。
- 对数据进行归一化处理,以消除不同量纲对模型训练的影响。
- 特征提取:
- 使用适当的方法(如主成分分析PCA、特征选择等)对预处理后的数据进行特征提取,获取与风电功率预测相关的关键特征。
- 模型构建:
- 构建BiGRU模型,设置合适的网络结构和参数(如隐藏层单元数、学习率、优化算法等)。
- 将多变量输入(如风速、风向、温度等)作为BiGRU模型的输入,进行单步预测。
- 模型训练:
- 使用训练集数据对BiGRU模型进行训练,通过反向传播算法更新网络参数。
- 在训练过程中,可以采用适当的损失函数(如均方误差MSE)来衡量预测值和真实值之间的差异,并通过优化算法(如Adam、RMSprop等)来调整模型参数。
- 模型评估与预测:
- 使用测试集数据对训练好的BiGRU模型进行预测。
- 通过计算均方误差(MSE)、平均绝对误差(MAE)等指标评估模型的预测性能。
四、研究优势与挑战
优势:
- 高精度:BiGRU模型能够同时考虑时序数据的过去和未来信息,提高预测精度。
- 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。
- 稳定性好:通过引入门控机制,模型在处理时序数据时具有更好的稳定性。
挑战:
- 计算复杂度:BiGRU模型的计算复杂度较高,需要较长的训练时间和较高的计算资源。
- 数据依赖性:模型的预测性能高度依赖于输入数据的质量和数量。如果数据存在缺失或异常值,可能会对预测结果产生较大影响。
- 参数调优:模型的性能受参数影响较大,需要进行细致的参数调优工作以获得最佳预测效果。
五、未来研究方向
随着深度学习技术的不断发展,基于BiGRU的风电功率预测研究将不断深入和完善。未来研究可以进一步探索以下方向:
- 多源数据融合:将更多的数据源(如气象数据、地理数据、电网运行数据等)进行融合,以提高预测模型的准确性和鲁棒性。
- 模型优化:通过引入注意力机制、残差网络等先进算法对BiGRU模型进行优化,以进一步提高预测精度和训练效率。
- 实时预测:开发高效的实时预测算法和平台,以实现风电功率的实时预测和动态调度。
综上所述,基于BiGRU的风电功率预测研究具有重要的学术价值和实际应用意义。通过不断优化和完善预测模型,可以为电力系统的稳定运行和优化调度提供更加可靠的技术支持。
📚2 运行结果
部分代码:
% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74 0.8 0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]
%
% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87 0.15 712.77 684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】
%
% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72 0.87 0.08 742.81 751.3】
function res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
for i = 1:num_samples
h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
res{i,1}= h1;
h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
res{i,2} = h2;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取