💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要
我们构建了一种新的自适应算法,用于应用于具有局部特征的插值、边值和初边值问题的径向基函数(RBF)方法。可以根据在更精细的点集上评估的残差来添加和删除节点。我们还根据节点间距调整了RBF的形状参数,以防止插值矩阵的条件增长。该方法在具有非平凡域的一维和二维空间中的数值例子中显示了其性能。
1.导言
径向基函数(RBF)方法因其简单性和易于在多元散射数据近似中实现而受到称赞[1],并且它们正成为偏微分方程(PDE)数值求解的一种可行选择[2],[3],[4],[5]。与有限差分、有限体积和有限元等低阶方法相比,基于RBF的方法具有许多优点,例如不需要网格或三角剖分、实现简单、维度独立,并且边界没有阶梯状或多边形化。此外,根据如何选择RBF,可以实现高阶或谱收敛[6],[7]。
在空间和/或时间上表现出高度局部化的问题中,如陡坡、拐角和非线性导致的拓扑变化,自适应方法可能比固定网格方法更可取。目标是获得一个数值解,使得误差在最小的自由度数下低于规定的精度。由于RBF方法完全是无网格的,只需要插值节点和一组称为中心点的点来定义基函数,因此根据细化节点和粗化节点来实现自适应是非常简单的。
近年来,一些研究人员将RBF方法纳入了一些自适应方案中,这些方案适用于许多时间独立和时间依赖的环境,无论是主要角色还是支持角色。在[8]中,Bozzini等人结合了
-样条技术,特别是缩放的多二次曲面,作为自适应插值方法。与标准中使用的分段线性样条插值不同样条技术,缩放的多二次曲面提供了更平滑的插值,并保持了优异的形状保持特性(正性、单调性和凸性)。Schaback等人[9]和Hon等人[10]提出了基于贪婪算法和最佳
使用紧支撑的RBF进行插值和配点问题的长期近似。已知他们的方法的收敛是线性的。在边界层问题中,Hon [11]提出了一种使用多二次曲面的自适应技术。基于控制方程弱公式化的指标用于自适应地将更多点重新分配到边界层。在时间相关的情况下,Behrens等人[12]、[13]将自适应半拉格朗日方法与局部薄板样条插值相结合。插值部分本身在效率、近似质量和方法的自适应规则方面起着至关重要的作用。他们的自适应方法在非线性输运方程上表现良好。在[14]中,Sarra将一种简单的移动网格算法修改为用于时间依赖偏微分方程的径向基函数方法,该算法是为低阶有限差分法开发的。该方法本质上是一种使用RBF实现空间中弧长算法等分布的线方法。
本文的目的是提出一种基于残差子采样的自适应RBF在时间独立问题中的新方法,特别是在插值和边值问题中。我们从非重叠的盒子开始,每个盒子包含一个活动中心。一旦为活动中心集计算了插值,就会在每个框中更精细的节点集上对所得近似的残差进行采样。根据插值或偏微分方程在这些点上的残差大小,将更精细的节点添加到中心集或从中删除。然后使用新的活动中心集重新计算插值,以获得新的近似值。径向基函数形状参数的选择也是该方法的关键。第3.1节将解释调整形状参数的程序。
我们的方法很容易在任何维度和任何几何形状中实现。我们证明了这种技术在一维、方形和非平凡二维区域插值的有效性。我们还表明,它可以应用于线性和非线性边值问题。最后,我们表明该方法对于时间相关问题也可能是有效的,无论是作为时间步长后处理器还是直接在时空上操作。
详细文章见第4部分。
📚2 运行结果
部分代码:
function [x,param,values] = coarserefine(f,intrv,theta,N,alpha)
% 1-D adaptive residual subsampling method for radial basis function
% interpolation
%
% f: function defined on interval intrv = [a b].
% intrv: interval [a b] where f is defined.
% theta: threshold interval [thetar thetac] where thetac < thetar.
% thetar: refinement threshold.
% thetac: coarsening threshold.
% N: Initial equally-spaced N centers.
% alpha: global multiplier of multiquadric parameters
%
% Example 1 : f = @(x) abs(x+.04)
% coarserefine(f,[-1 1],[5e-5 5e-7],11,0.75)
%
% Example 2 : coarserefine(@(x)myfun(x,5),[-1 1],[5e-5 5e-7],11,0.75)
% %----------------------%
% function y = myfun2(x,c)
% y = 1./(1 + (c*x).^2);
% %----------------------%
% Initial points
x = linspace(intrv(1),intrv(2),N)';
N = length(x); dx = diff(x);
epsilon = alpha*min([Inf;1./dx],[1./dx;Inf]);
y = x(1:N-1) + 0.5*dx;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取