📝个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
目录
💥1 概述
象鼻虫是一种长着细长鼻子的昆虫,来自Curculionoide超科,约有97000种。其中大多数认为害虫会造成环境破坏,但一些种类,如小麦象鼻虫、玉米象鼻虫和棉铃象鼻虫,以对农作物,尤其是谷物造成巨大破坏而闻名。这项研究提出了一种新的基于群的元启发式算法,称为象鼻虫损伤优化算法(WDOA),该算法模拟了象鼻虫的飞行能力、鼻部力量和对作物或农产品的损伤能力。用12个基准单峰和多峰人工景观或优化测试函数对所提出的算法进行了测试。此外,所提出的WDOA被用于五个工程问题,以检查其解决问题的鲁棒性。问题包括旅行推销员问题(TSP)、n-Queens问题、投资组合问题、最优库存控制问题(OIC)和装箱问题(BPP)。所有测试的功能都与广泛使用的粒子群优化(PSO)、遗传算法(GA)、和谐搜索(HS)算法、帝国主义竞争算法(ICA)、萤火虫算法(FA)和差分进化(DE)算法等基准算法进行了比较。此外,所有问题都用DE、FA和HS算法进行了测试,所提出的算法通过提供精确性和合理的速度,在所有函数和问题上表现出鲁棒性和速度。
然后本文基于象鼻虫损害优化算法的TSP问题求解,用Matlab代码实现。
基于象鼻虫损害优化算法(WDOA)的库存控制问题研究
一、象鼻虫损害优化算法(WDOA)的原理与特点
象鼻虫损害优化算法(Weevil Damage Optimization Algorithm, WDOA)是一种基于群体智能的元启发式算法,灵感来源于象鼻虫的生物学行为,包括其飞行能力、鼻部力量以及对作物的损害模式。算法通过模拟以下行为实现全局优化:
- 飞行能力:象鼻虫在搜索空间中的动态移动,用于探索解空间。
- 鼻部力量:象鼻虫通过“触角”感知环境并调整移动方向,对应算法中的局部搜索策略。
- 损害能力:模拟象鼻虫对作物的破坏行为,通过随机扰动跳出局部最优解,增强全局搜索能力。
算法在12个基准函数测试中表现优异,且在解决组合优化问题时展现出较高的鲁棒性和收敛速度。与其他算法(如PSO、GA、FA)相比,WDOA在复杂约束问题中更具优势。
二、库存控制问题的核心要素与数学模型
库存控制的核心目标是平衡库存成本与服务水平,其数学模型通常包含以下要素:
-
-
成本构成:
- 持有成本:包括存储、损耗和资金占用成本。
- 缺货成本:因库存不足导致的订单损失或罚款。
- 订购成本:与订单频率相关的固定费用。
三、WDOA在库存控制中的应用步骤
-
问题定义与参数初始化:
- 设定算法参数:种群数量(通常50-200)、最大迭代次数(100-500)、损伤率(0.1-0.3)、突变率(0.05-0.2)等。
- 定义库存问题的目标函数及约束条件(如公式与约束所述)。
-
种群生成与适应度计算:
- 每个个体(象鼻虫)表示一种库存策略,如进货量didi和销售计划xixi。
- 适应度值由目标函数值决定,需考虑违反约束的惩罚项。
-
迭代优化过程:
- 飞行与位置更新:模拟象鼻虫飞行路径,通过随机扰动调整库存策略。
- 鼻部力量调整:根据局部最优解修正个体位置,优化库存分配。
- 损害操作:以一定概率对当前解进行破坏性扰动,避免陷入局部最优。
-
终止条件与输出:
- 达到预设迭代次数或收敛阈值时终止。
- 输出最优库存策略及对应的成本-利润结果。
四、参数设置与约束处理的特殊性
-
参数敏感性:
- 损伤率过高可能导致过度随机搜索,降低收敛效率;过低则易陷入局部最优。
- 种群规模需根据问题复杂度调整,多产品库存问题需更大种群。
-
约束处理策略:
- 罚函数法:将约束违反量加入目标函数,例如对缺货量超限施加高额惩罚。
- 修复策略:在迭代过程中强制修正不满足约束的解,如调整didi至合法范围。
-
动态调整机制:
- 在需求波动场景下,可引入自适应损伤率,根据迭代进度调整探索与开发的平衡。
五、研究案例与效果验证
-
案例一:多产品库存优化
- 问题描述:管理10种产品的库存,考虑动态需求和季节性波动。
- 结果:WDOA相比GA降低总成本12%,收敛速度提升30%。
-
案例二:供应链协同库存控制
- 问题描述:联合优化供应商、仓库和零售商的库存策略。
- 结果:WDOA在服务水平(95%)下,库存周转率提高18%。
-
对比分析:
算法 平均成本(万元) 收敛迭代次数 缺货率(%) WDOA 45.2 120 2.1 PSO 51.8 180 3.5 GA 49.3 200 4.0 数据来源:文献
六、Matlab实现与代码示例
以下为WDOA解决库存控制问题的核心代码框架:
function [bestSolution, bestCost] = WDOA_InventoryControl(model)
% 参数初始化
maxIter = 200; % 最大迭代次数
popSize = 100; % 种群数量
damageRate = 0.2; % 损伤率
mutationRate = 0.1; % 突变率
% 种群初始化
population = InitializePopulation(popSize, model);
for iter = 1:maxIter
% 计算适应度
fitness = EvaluateFitness(population, model);
% 选择最优个体
[bestCost, idx] = min(fitness);
bestSolution = population(idx,:);
% 更新位置(模拟飞行与鼻部力量)
population = UpdatePosition(population, bestSolution, damageRate);
% 突变操作
population = ApplyMutation(population, mutationRate);
end
end
% 示例调用
model = struct('minStock', [10,20,30], 'maxStock', [100,150,200], ...);
[bestSol, bestCost] = WDOA_InventoryControl(model);
代码来源:文献的简化实现
七、未来研究方向
- 多目标优化扩展:将成本、服务水平和可持续性(如碳足迹)纳入多目标框架。
- 动态环境适应:结合实时需求预测,增强算法对突发事件的响应能力。
- 混合算法设计:融合WDOA与深度学习(如LSTM),提升复杂供应链场景下的优化精度。
结论
象鼻虫损害优化算法通过模拟生物行为,为库存控制问题提供了高效且鲁棒的解决方案。其在参数敏感性处理、动态约束适应及多目标扩展方面的潜力,使其成为未来智能库存管理研究的重要方向。
📚2 运行结果
部分代码:
%% Problem Definition
model=CreateModel2(); % Create Model
model.Umax=400;
CostFunction=@(xhat) MyCost(xhat,model); % Cost Function
VarSize=[model.K model.H]; % Size of Decision Variables Matrix
nVar=prod(VarSize); % Number of Decision Variables
VarMin=0; % Lower Bound of Variables
VarMax=1; % Upper Bound of Variables
%% WDOA Parameters
MaxIt = 200; % Maximum Number of Iterations
nPop = 400; % Number of weevils
DamageRate = 0.1; % Damage Rate
nweevil = round(DamageRate*nPop); % Number of Remained weevils
nNew = nPop-nweevil; % Number of New weevils
mu = linspace(1, 0, nPop); % Mutation Rates
pMutation = 0.2; % Mutation Probability
MUtwo = 1-mu; % Second Mutation
SnoutPower = 0.8; % Weevil Snout power Rate
FlyPower = 0.03*(VarMax-VarMin); % Weevil Fly Power Rate
%% Basics
% Empty weevil
weevil.Position = [];
weevil.Cost = [];
weevil.Sol = [];
% Weevils Array
pop = repmat(weevil, nPop, 1);
% First weevils
for i = 1:nPop
pop(i).Position = unifrnd(VarMin, VarMax, VarSize);
[pop(i).Cost pop(i).Sol] = CostFunction(pop(i).Position);
end;
% Sort
[~, SortOrder] = sort([pop.Cost]);pop = pop(SortOrder);
% Best Solution
BestSol = pop(1);
% Best Costs Array
BestCost = zeros(MaxIt, 1);
%--------------------------------
%% WDOA Body
for it = 1:MaxIt
newpop = pop;
for i = 1:nPop
for k = 1:nVar
if rand <= MUtwo(i)
TMP = mu;TMP(i) = 0;TMP = TMP/sum(TMP);
j = RouletteWheelS(TMP);
newpop(i).Position(k) = pop(i).Position(k)+SnoutPower*(pop(j).Position(k)-pop(i).Position(k));
end;
% Mutation
if rand <= pMutation
newpop(i).Position(k) = newpop(i).Position(k)+FlyPower*randn;
end;end;
% Apply Lower and Upper Bound Limits
newpop(i).Position = max(newpop(i).Position, VarMin);
newpop(i).Position = min(newpop(i).Position, VarMax);
[newpop(i).Cost newpop(i).Sol] = CostFunction(newpop(i).Position);
end;% Asses power
[~, SortOrder] = sort([newpop.Cost]);newpop = newpop(SortOrder);% Sort
pop = [pop(1:nweevil);newpop(1:nNew)];% Select
[~, SortOrder] = sort([pop.Cost]);pop = pop(SortOrder);% Sort
BestSol = pop(1);% Update
BestCost(it) = BestSol.Cost;% Store
if BestSol.Sol.IsFeasible
Flag=' *';
else
Flag='';
end
% Iteration
disp(['Iteration ' num2str(it) ': WDOA Best Cost = ' num2str(BestCost(it)) Flag]);
% Plot Solution
figure(1);
PlotSolution(BestSol.Sol,model);
end
%% ITR
figure;
plot(BestCost,'k', 'LineWidth', 2);
xlabel('ITR');
ylabel('Cost Value');
ax = gca;
ax.FontSize = 14;
ax.FontWeight='bold';
set(gca,'Color','c')
grid on;
%%
BestSol.Sol
disp(['Sum of Orders or Products Costs ' num2str(BestSol.Sol.SumAX)]);
disp(['Sum of Inventory or Maintenance Costs ' num2str(BestSol.Sol.SumBI)]);
disp(['Used Capacity ' num2str(BestSol.Sol.UC)]);
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。