👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于改进的DBN降水预测方法研究
精确高效的降水预测模型可以更好地反映未来的气候,为管理决策提供重要参考,帮助人们为未来的恶劣天气做好准备。
深度信念网络,DBN,Deep Belief Nets,神经网络的一种。既可以用于非监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。
从非监督学习来讲,其目的是尽可能地保留原始特征的特点,同时降低特征的维度。从监督学习来讲,其目的在于使得分类错误率尽可能地小。而不论是监督学习还是非监督学习,DBN的本质都是Feature Learning的过程,即如何得到更好的特征表达。
作为神经网络,神经元自然是其必不可少的组成部分。DBN由若干层神经元构成,组成元件是受限玻尔兹曼机(RBM)。
先了解下RBM:
RBM 只有两层神经元,一层叫做显层 (visible layer),由显元 (visible units) 组成,用于输入训练数据。另一层叫做隐层 (Hidden layer),相应地,由隐元 (hidden units)组成,用作特征检测器 (feature detectors)。
一、DBN的基本原理及其在降水预测中的适用性
深度信念网络(Deep Belief Network, DBN)是一种由多层受限玻尔兹曼机(RBM)堆叠而成的深度学习模型,其核心思想是通过逐层无监督预训练提取高阶特征,再结合有监督微调优化预测性能。DBN的结构包含输入层(可见层)、多个隐藏层(RBM堆叠)和输出层(通常为BP网络或分类器)。每个RBM层通过对比散度(CD)算法进行训练,利用吉布斯采样实现显层与隐层间的双向特征重构。
降水预测的适用性:
- 非线性特征提取:降水过程受多环境因子(如温度、湿度、风速等)的复杂非线性影响,DBN通过多层RBM可有效捕捉此类高阶相关性。
- 时序与空间建模:DBN可与LSTM、卷积结构结合,处理降水的时间序列特性(如季节波动)和空间分布特征(如地形相关性)。
- 数据稀疏性处理:DBN的生成模型特性使其在稀疏气象站点数据中表现优异,例如通过多源数据融合提升插值精度。
二、现有DBN降水预测方法的改进方向
1. 模型结构优化
- 层数选择:实验表明,DBN层数并非越多越好。例如,三层DBN的MAE为1.4,优于四层(1.7)和五层(1.5),因过深网络易导致梯度消失。
- 混合模型设计:
- DBN-LSTM:结合LSTM处理时间依赖性,提升对降水趋势的长期预测能力。
- 卷积DBN(CDBN) :引入卷积结构保留降水数据的二维空间特征(如雷达回波图像)。
- EMD-DBN:通过经验模态分解(EMD)对降水时序数据进行降噪和特征重构。
2. 参数优化算法
- 启发式算法:
- 麻雀算法(SSA) 、 鲸鱼算法(WOA) :优化RBM的权重初始化和学习率,减少局部最优风险。
- 模拟退火与自适应变异:改进WOA的搜索效率,增强DBN的全局收敛性。
- 麻雀算法(SSA) 、 鲸鱼算法(WOA) :优化RBM的权重初始化和学习率,减少局部最优风险。
- 对比散度算法改进:结合Sinh-Cosh算法(SCA)加速吉布斯采样收敛,降低计算成本。
3. 数据增强与预处理
- 多源数据融合:集成气象站点数据、遥感影像(如高光谱反射率)及地形因子(如高程、坡度),提升空间预测精度。
- 降噪与平衡处理:
- VMD(变分模态分解) :对非平稳降水数据进行平稳化处理,降低预测误差。
- SMOTE算法:解决短时强降水样本不均衡问题,提升少数类识别率。
4. 评估指标与调优
- 核心指标:
- Nash-Sutcliffe效率系数(NSE) :衡量模型预测与实测值的拟合度,NSE>0.5为有效模型。
- 均方根误差(RMSE) 、 平均绝对误差(MAE) :量化预测偏差,改进模型后RMSE可降低35%。
- R²(决定系数) :评估模型解释力,融合多源数据的DBN在滁州案例中R²达0.69。
- Nash-Sutcliffe效率系数(NSE) :衡量模型预测与实测值的拟合度,NSE>0.5为有效模型。
- 不确定性分析:通过预测区间覆盖率(PICP)和平均预测区间(MPI)评估模型可靠性。
三、典型改进技术的实际应用案例
-
滁州市降水量空间分布预测
- 方法:融合30个气象站点数据和地形因子,构建DBN回归模型。
- 结果:空间插值R²达0.69,MAE为31.32 mm,验证了多源数据融合的有效性。
-
DBN-LSTM混合模型在贵州的应用
- 方法:DBN提取降水因子特征,LSTM建模时序依赖。
- 结果:对比传统ARIMA和SVM模型,预测误差降低20%,雨季拟合效果显著提升。
-
短时强降水识别(SMOTE-DBN)
- 方法:利用SMOTE平衡数据集,结合高斯RBM提取物理量参数特征。
- 结果:命中率提高15%,误警率降低10%,适用于极端天气预警。
-
EMD-DBN径流预测
- 方法:通过EMD分解径流数据,DBN重构降噪后的子序列。
- 结果:NSE值从0.32(原始DBN)提升至0.54,适用于长期水资源管理。
四、未来研究方向
- 动态权重机制:结合贝叶斯网络(如动态贝叶斯DBN)实现降水预测中的时变权重自适应。
- 可解释性增强:通过注意力机制或特征重要性分析,揭示关键气象因子的贡献度。
- 边缘计算优化:针对气象实时预测需求,开发轻量化DBN架构(如剪枝、量化)。
五、总结
改进的DBN方法通过结构优化、参数调优和数据增强,显著提升了降水预测的精度和鲁棒性。典型案例表明,其在空间插值、极端事件识别和长期趋势预测中均表现出色。未来需进一步结合新型算法(如元学习、联邦学习)和多模态数据(如卫星云图、社交媒体信息),以应对气候变化下的复杂降水预测挑战。
📚2 运行结果
部分代码:
clc;clear;close all;
%% 初始化种群
f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式
figure(1);ezplot(f,[0,0.01,20]);
N = 50; % 初始种群个数
d = 1; % 空间维数
ger = 100; % 最大迭代次数
limit = [0, 20]; % 设置位置参数限制
vlimit = [-1, 1]; % 设置速度限制
w = 0.8; % 惯性权重
c1 = 0.5; % 自我学习因子
c2 = 0.5; % 群体学习因子
for i = 1:d
x = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, d);%初始种群的位置
end
v = rand(N, d); % 初始种群的速度
xm = x; % 每个个体的历史最佳位置
ym = zeros(1, d); % 种群的历史最佳位置
fxm = zeros(N, 1); % 每个个体的历史最佳适应度
fym = -inf; % 种群历史最佳适应度
hold on
plot(xm, f(xm), 'ro');title('初始状态图');
figure(2)
%% 群体更新
iter = 1;
record = zeros(ger, 1); % 记录器
while iter <= ger
fx = f(x) ; % 个体当前适应度
for i = 1:N
if fxm(i) < fx(i)
fxm(i) = fx(i); % 更新个体历史最佳适应度
xm(i,:) = x(i,:); % 更新个体历史最佳位置
end
end
if fym < max(fxm)
[fym, nmax] = max(fxm); % 更新群体历史最佳适应度
ym = xm(nmax, :); % 更新群体历史最佳位置
end
v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新
% 边界速度处理
v(v > vlimit(2)) = vlimit(2);
v(v < vlimit(1)) = vlimit(1);
x = x + v;% 位置更新
% 边界位置处理
x(x > limit(2)) = limit(2);
x(x < limit(1)) = limit(1);
record(iter) = fym;%最大值记录
% x0 = 0 : 0.01 : 20;
% plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')
% pause(0.1)
iter = iter+1;
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。(内容仅供参考,具体以运行结果为准。)
[1]赵华生,金龙,农吉夫,陈春涛.降水预报的神经网络集成方法的改进[J].统计与决策,2008(10):26-28.