基于改进的DBN降水预测方法(Matlab代码实现)

  👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于改进的DBN降水预测方法研究

一、DBN的基本原理及其在降水预测中的适用性

二、现有DBN降水预测方法的改进方向

1. 模型结构优化

2. 参数优化算法

3. 数据增强与预处理

4. 评估指标与调优

三、典型改进技术的实际应用案例

四、未来研究方向

五、总结

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现 


💥1 概述

基于改进的DBN降水预测方法研究

精确高效的降水预测模型可以更好地反映未来的气候,为管理决策提供重要参考,帮助人们为未来的恶劣天气做好准备。

深度信念网络,DBN,Deep Belief Nets,神经网络的一种。既可以用于非监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。

从非监督学习来讲,其目的是尽可能地保留原始特征的特点,同时降低特征的维度。从监督学习来讲,其目的在于使得分类错误率尽可能地小。而不论是监督学习还是非监督学习,DBN的本质都是Feature Learning的过程,即如何得到更好的特征表达。

作为神经网络,神经元自然是其必不可少的组成部分。DBN由若干层神经元构成,组成元件是受限玻尔兹曼机(RBM)

先了解下RBM:

RBM 只有两层神经元,一层叫做显层 (visible layer),由显元 (visible units) 组成,用于输入训练数据。另一层叫做隐层 (Hidden layer),相应地,由隐元 (hidden units)组成,用作特征检测器 (feature detectors)。

一、DBN的基本原理及其在降水预测中的适用性

深度信念网络(Deep Belief Network, DBN)是一种由多层受限玻尔兹曼机(RBM)堆叠而成的深度学习模型,其核心思想是通过逐层无监督预训练提取高阶特征,再结合有监督微调优化预测性能。DBN的结构包含输入层(可见层)、多个隐藏层(RBM堆叠)和输出层(通常为BP网络或分类器)。每个RBM层通过对比散度(CD)算法进行训练,利用吉布斯采样实现显层与隐层间的双向特征重构。

降水预测的适用性

  1. 非线性特征提取:降水过程受多环境因子(如温度、湿度、风速等)的复杂非线性影响,DBN通过多层RBM可有效捕捉此类高阶相关性。
  2. 时序与空间建模:DBN可与LSTM、卷积结构结合,处理降水的时间序列特性(如季节波动)和空间分布特征(如地形相关性)。
  3. 数据稀疏性处理:DBN的生成模型特性使其在稀疏气象站点数据中表现优异,例如通过多源数据融合提升插值精度。

二、现有DBN降水预测方法的改进方向
1. 模型结构优化
  • 层数选择:实验表明,DBN层数并非越多越好。例如,三层DBN的MAE为1.4,优于四层(1.7)和五层(1.5),因过深网络易导致梯度消失。

  • 混合模型设计
    • DBN-LSTM:结合LSTM处理时间依赖性,提升对降水趋势的长期预测能力。
    • 卷积DBN(CDBN) :引入卷积结构保留降水数据的二维空间特征(如雷达回波图像)。
    • EMD-DBN:通过经验模态分解(EMD)对降水时序数据进行降噪和特征重构。

2. 参数优化算法
  • 启发式算法
    • 麻雀算法(SSA) 、 鲸鱼算法(WOA) :优化RBM的权重初始化和学习率,减少局部最优风险。

    • 模拟退火与自适应变异:改进WOA的搜索效率,增强DBN的全局收敛性。
  • 对比散度算法改进:结合Sinh-Cosh算法(SCA)加速吉布斯采样收敛,降低计算成本。
3. 数据增强与预处理
  • 多源数据融合:集成气象站点数据、遥感影像(如高光谱反射率)及地形因子(如高程、坡度),提升空间预测精度。
  • 降噪与平衡处理
    • VMD(变分模态分解) :对非平稳降水数据进行平稳化处理,降低预测误差。
    • SMOTE算法:解决短时强降水样本不均衡问题,提升少数类识别率。
4. 评估指标与调优
  • 核心指标
    • Nash-Sutcliffe效率系数(NSE) :衡量模型预测与实测值的拟合度,NSE>0.5为有效模型。

    • 均方根误差(RMSE) 、 平均绝对误差(MAE) :量化预测偏差,改进模型后RMSE可降低35%。
    • R²(决定系数) :评估模型解释力,融合多源数据的DBN在滁州案例中R²达0.69。
  • 不确定性分析:通过预测区间覆盖率(PICP)和平均预测区间(MPI)评估模型可靠性。

三、典型改进技术的实际应用案例
  1. 滁州市降水量空间分布预测

    • 方法:融合30个气象站点数据和地形因子,构建DBN回归模型。
    • 结果:空间插值R²达0.69,MAE为31.32 mm,验证了多源数据融合的有效性。
  2. DBN-LSTM混合模型在贵州的应用

    • 方法:DBN提取降水因子特征,LSTM建模时序依赖。
    • 结果:对比传统ARIMA和SVM模型,预测误差降低20%,雨季拟合效果显著提升。
  3. 短时强降水识别(SMOTE-DBN) 

    • 方法:利用SMOTE平衡数据集,结合高斯RBM提取物理量参数特征。
    • 结果:命中率提高15%,误警率降低10%,适用于极端天气预警。
  4. EMD-DBN径流预测

    • 方法:通过EMD分解径流数据,DBN重构降噪后的子序列。
    • 结果:NSE值从0.32(原始DBN)提升至0.54,适用于长期水资源管理。

四、未来研究方向
  1. 动态权重机制:结合贝叶斯网络(如动态贝叶斯DBN)实现降水预测中的时变权重自适应。
  2. 可解释性增强:通过注意力机制或特征重要性分析,揭示关键气象因子的贡献度。
  3. 边缘计算优化:针对气象实时预测需求,开发轻量化DBN架构(如剪枝、量化)。

五、总结

改进的DBN方法通过结构优化、参数调优和数据增强,显著提升了降水预测的精度和鲁棒性。典型案例表明,其在空间插值、极端事件识别和长期趋势预测中均表现出色。未来需进一步结合新型算法(如元学习、联邦学习)和多模态数据(如卫星云图、社交媒体信息),以应对气候变化下的复杂降水预测挑战。

📚2 运行结果

部分代码:

clc;clear;close all;  
%% 初始化种群  
f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式  
figure(1);ezplot(f,[0,0.01,20]);  
N = 50;                         % 初始种群个数  
d = 1;                          % 空间维数  
ger = 100;                      % 最大迭代次数       
limit = [0, 20];                % 设置位置参数限制  
vlimit = [-1, 1];               % 设置速度限制  
w = 0.8;                        % 惯性权重  
c1 = 0.5;                       % 自我学习因子  
c2 = 0.5;                       % 群体学习因子   
for i = 1:d  
    x = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, d);%初始种群的位置  
end  
v = rand(N, d);                  % 初始种群的速度  
xm = x;                          % 每个个体的历史最佳位置  
ym = zeros(1, d);                % 种群的历史最佳位置  
fxm = zeros(N, 1);               % 每个个体的历史最佳适应度  
fym = -inf;                      % 种群历史最佳适应度  
hold on  
plot(xm, f(xm), 'ro');title('初始状态图');  
figure(2)  
%% 群体更新  
iter = 1;  
record = zeros(ger, 1);          % 记录器  
while iter <= ger  
     fx = f(x) ; % 个体当前适应度     
     for i = 1:N        
        if fxm(i) < fx(i)  
            fxm(i) = fx(i);     % 更新个体历史最佳适应度  
            xm(i,:) = x(i,:);   % 更新个体历史最佳位置  
        end   
     end  
if fym < max(fxm)  
        [fym, nmax] = max(fxm);   % 更新群体历史最佳适应度  
        ym = xm(nmax, :);      % 更新群体历史最佳位置  
 end  
    v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新  
    % 边界速度处理  
    v(v > vlimit(2)) = vlimit(2);  
    v(v < vlimit(1)) = vlimit(1);  
    x = x + v;% 位置更新  
    % 边界位置处理  
    x(x > limit(2)) = limit(2);  
    x(x < limit(1)) = limit(1);  
    record(iter) = fym;%最大值记录  
%     x0 = 0 : 0.01 : 20;  
%     plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')  
%     pause(0.1)  
    iter = iter+1;  
end  

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。(内容仅供参考,具体以运行结果为准。)

[1]赵华生,金龙,农吉夫,陈春涛.降水预报的神经网络集成方法的改进[J].统计与决策,2008(10):26-28.

🌈4 Matlab代码实现 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值