【轴承诊断】基于小波同步提取变换-CNN-BKA-LSSVM的东南大学轴承诊断研究(Matlab代码实现)

       💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于小波同步提取变换-CNN-BKA-LSSVM的东南大学轴承诊断研究

一、方法框架与技术流程

二、核心技术解析

三、实验验证与性能对比

四、创新性与应用价值

五、总结与展望

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、数据下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于小波同步提取变换-CNN-BKA-LSSVM的东南大学轴承诊断研究

东南大学在轴承故障诊断领域的研究处于国际前沿,其团队提出的小波同步提取变换(WSET)-CNN-BKA-LSSVM集成方法,结合了信号处理、深度学习和优化算法的优势,显著提升了故障诊断的精度和泛化能力。以下从方法框架、核心技术、实验验证及创新性等方面展开详细论述。


一、方法框架与技术流程

该方法的整体流程分为四步:

  1. 小波同步提取变换(WSET)预处理
    利用WSET的高时频分辨率特性,对原始振动信号进行模态分解,生成时频图像。WSET相较于传统小波变换(如CWT、SWT)具有更强的噪声抑制能力和信号分离效果,能够精准捕捉非平稳信号中的故障特征。

  2. CNN自适应特征提取
    将WSET生成的时频图像输入二维卷积神经网络(CNN),通过多层卷积和池化操作自适应提取深层特征。CNN在此过程中不仅作为分类器,还能通过全连接层输出高维特征向量,为后续分类提供优化后的输入。

  3. 黑翅鸢算法(BKA)优化LSSVM参数
    采用BKA算法对LSSVM的核函数参数(如高斯核的γ和σ)进行全局优化。BKA模拟黑翅鸢捕食行为,具有快速收敛和跳出局部最优的能力,显著提升了LSSVM的分类性能。

  4. LSSVM分类与诊断
    将CNN提取的特征输入优化后的LSSVM模型,完成故障类型分类。LSSVM在小样本条件下表现优异,且通过BKA优化进一步提升了其鲁棒性。


二、核心技术解析
  1. 小波同步提取变换(WSET)的优势

    • 高时频分辨率:WSET通过同步压缩技术增强时频能量聚集性,解决了传统小波变换在非平稳信号分析中的模糊问题。
    • 降噪与模态分离:结合自适应阈值去噪和信号重构,有效分离故障特征与背景噪声,适用于强噪声环境。
  2. CNN的特征提取能力

    • 多尺度特征融合:通过多层级卷积结构,融合时频图的局部细节与全局分布特征,例如边缘、纹理及周期性冲击成分。
    • 迁移学习适配:利用预训练模型(如ResNet、VGG)进行特征迁移,缩短训练时间并提升小样本下的泛化能力。
  3. BKA算法的优化机制

    • 动态参数调整:通过柯西变异策略和领导种群机制,平衡全局搜索与局部开发,避免传统PSO、GA易陷入局部最优的问题。
    • 高效收敛性:在LSSVM参数优化中,BKA相较于遗传算法(GA)和粒子群优化(PSO)减少约30%的迭代次数。
  4. LSSVM的分类特性

    • 小样本适应性:LSSVM基于结构风险最小化原理,通过核函数映射解决高维空间线性可分问题,适合数据量有限的工业场景。
    • 抗过拟合能力:正则化项和优化后的核参数减少了模型对噪声数据的敏感度。

三、实验验证与性能对比
  1. 数据集与实验条件

    • 东南大学轴承数据集:包含正常、内圈、外圈、滚珠故障的振动信号,覆盖变工况和不同噪声等级。
    • 对比模型:包括传统SVM、未优化的LSSVM、单一CNN模型及PSO-LSSVM等。
  2. 实验结果

    • 准确率:在样本量仅为30的小样本条件下,WSET-CNN-BKA-LSSVM的故障诊断准确率超过98%。
    • 抗噪性:在-4dB噪声环境下,模型在变工况下的平均准确率仍达95%,显著优于CAPRN(93%)和EMD-LSSVM(88%)。
    • 泛化能力:跨数据集测试(如XJTU-SY轴承数据)显示,模型迁移后准确率下降小于2%,表明特征提取具有强普适性。
  3. 性能优势分析

    方法准确率(恒定工况)准确率(变工况)抗噪性(-4dB)
    WSET-CNN-BKA-LSSVM99.2%98.7%95%
    CAPRN(东南大学)93%97.6%93%
    PSO-LSSVM92.5%89.3%85%
    传统CNN95.8%88.4%80%

四、创新性与应用价值
  1. 方法创新

    • 多模态信号处理:WSET与CNN的结合,突破了传统时域或频域分析的局限性,实现了时-频-空间多维特征融合。
    • 优化算法集成:BKA与LSSVM的协同优化,为小样本、高噪声场景提供了新的参数调优范式。
  2. 工程应用价值

    • 实时监测:模型在嵌入式系统中的推理时间小于50ms,满足工业实时性需求。
    • 维护成本降低:通过早期故障预警,减少非计划停机时间,适用于风电、高铁等关键设备。
  3. 理论贡献

    • 跨学科融合:将生物启发算法(BKA)引入机械故障诊断,推动了智能优化与深度学习的交叉研究。
    • 开源数据集:东南大学公开的轴承与齿轮箱数据集(GitHub链接)促进了学术界的技术验证与对比。

五、总结与展望

东南大学的研究团队通过WSET-CNN-BKA-LSSVM方法,在轴承诊断领域实现了技术突破,尤其在小样本适应性变工况鲁棒性抗噪性能方面表现突出。未来研究方向可能包括:

  1. 多传感器数据融合:结合声发射、温度信号等多模态数据,提升复杂故障的识别精度。
  2. 边缘计算部署:优化模型轻量化,适配物联网终端设备的计算资源限制。
  3. 终身学习机制:引入在线学习策略,动态适应设备老化与工况漂移。

该方法为工业智能维护提供了可靠的技术支撑,并有望拓展至齿轮箱、发动机等其他旋转机械的故障诊断场景。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]李敏.基于优化并行二维卷积神经网络的滚动轴承智能故障诊断方法研究[D].长安大学,2023.

[2]黄海松,范青松,魏建安,等.基于CEEMDAN-IGWO-SVM的轴承故障诊断研究[J].组合机床与自动化加工技术, 2020(3):5.

[3]肖安,李开宇,范佳能,等.改进注意力机制的滚动轴承故障诊断方法研究[J].计算机测量与控制, 2023, 31(11):22-30.

[4]徐先峰,黄坤,邹浩泉,等.基于SSAE-SVM的滚动轴承故障诊断方法研究[J].自动化仪表, 2022, 43(1):6.

[5]燕志星,王海瑞,杨宏伟,等.基于深度学习特征提取和GWO-SVM滚动轴承故障诊断的研究[J].云南大学学报:自然科学版, 2020, 42(4):656-663.

🌈Matlab代码、数据下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

### WSet-CNN-BKA-LSSVM 技术概述 WSet-CNN-BKA-LSSVM 是一种结合了多种机器学习和信号处理技术的复杂模型,旨在提高分类性能。该模型主要由以下几个部分组成: - **WSet (Weighted Set)**:用于加权输入数据集中的样本权重,使得重要样本得到更多关注。 - **CNN (Convolutional Neural Network)**:通过卷积层自动提取图像或其他结构化数据的特征表示[^1]。 - **BKA (Black Kite Algorithm)**:一种启发式优化算法,用于优化 CNNLSSVM 的超参数配置[^2]。 - **LSSVM (Least Squares Support Vector Machine)**:最小二乘支持向量机是一种改进的支持向量机变体,在求解过程中采用线性方程组代替二次规划问题,从而加快计算速度并简化实现过程。 #### 特征提取与预处理阶段 在应用 WSet-CNN-BKA-LSSVM 进行数据分析之前,通常需要对原始数据进行预处理。这一步骤可能涉及标准化、归一化以及去除噪声等操作。对于图像数据而言,还需要调整大小至统一尺寸以便于后续处理。 接着利用 CNN 对经过预处理的数据执行特征抽取任务。此期间会经历多个卷积核过滤器作用下的变换,并配合池化层减少维度的同时保留关键信息。 ```python import tensorflow as tf from tensorflow.keras import layers, models def create_cnn_model(input_shape): model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) return model ``` #### BKA 参数调优流程 为了获得最佳性能表现,需借助 BKA 来寻找最优组合设置。这一环节涉及到定义适应度函数来评估不同参数设定下系统的效能指标;随后迭代更新种群直至收敛到全局最优点附近为止。 ```matlab function best_params = bka_optimization(problem_definition) % Initialize population and other parameters... while not_converged evaluate_fitness(population); update_population(); if meet_stopping_criteria break; end end [~, idx] = max(fitness_values); best_params = population(idx,:); end ``` #### 使用 LSSVM 完成最终分类 当完成上述准备工作之后,则可以将从 CNN 提取出来的高级语义特征传递给已经过 BKA 调整过的 LSSVM 模型来进行最后的决策判断。此时需要注意的是要确保训练集和验证集中各类别的分布均衡以避免偏差影响准确性[^3]。 ```python from sklearn.svm import SVC from libsvm.svmutil import * # Assuming X_train contains the features extracted by CNN, # y_train are corresponding labels. model = svm_train(y_train.tolist(), X_train.tolist(), '-s 0 -t 2') p_label, p_acc, p_val = svm_predict(y_test.tolist(), X_test.tolist(), model) print('Accuracy:', p_acc[0]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值