【多通道滤波】基于最小均方(McFxLMS)算法用于自适应多通道有源噪声控制(MCANC)应用研究(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于最小均方(McFxLMS)算法的自适应多通道有源噪声控制(MCANC)研究综述

一、最小均方(McFxLMS)算法的定义与特点

二、自适应多通道有源噪声控制(MCANC)的基本原理

三、McFxLMS在MCANC中的应用现状

四、现有研究案例

五、性能优势与局限性

六、未来研究方向

七、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文档


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

多通道滤波参考最小均方(McFxLMS)算法广泛应用于自适应多通道有源噪声控制(MCANC)应用。作为一种关键且计算效率高的自适应关键算法,它通常也是同行和研究人员提出的新算法比较研究的基准。然而,到目前为止,FxLMS算法的代码很少,特别是对于大计数通道。因此,本文为McFxLMS算法提供了MATLAB代码(第4部分),可用于任意数量的信道系统。

本文详细阐述了MATLAB程序,该程序模拟前馈利用滤波-x最小均方差(FxLMS)进行多通道有源噪声控制(ANC)技术。更确切地说,用户可以自由选择参考麦克风的数量,次级声源和误差麦克风。此外,该计划还提供了利用以下选项的选择GPU,以提高计算效率。

主动噪声控制(ANC)是一种先进的技术,通过引入受控的抗噪声来有效地消除原始噪声,从而减少不必要的声音。这个过程,被称为相消干涉是波叠加原理的复杂应用物理学。由于其在降低低频噪声方面的效率和紧凑的尺寸,主动降噪被广泛使用在许多对噪声干扰敏感的应用中[1],[2],如耳机[3]-[7],汽车和窗户[8]-[15]。与单通道结构[16]-[18]相比,多通道有源噪声控制(MCANC)系统具有更大的可控度自由度,因此,在处理复杂的声学环境方面更有效[19]。此外,为了自适应算法,如多通道滤波参考最小均方(McFxLMS)算法,可帮助MCANC应对动态噪声和不断变化的声学环境已经开发用于噪声消除。尽管许多复杂的算法[20]-[29]和方法[30]-[35]来提高ANC系统的效率,McFxLMS在主动控制中起着至关重要的作用,并成为这些新算法的基准。此外,其衍生算法[36]-[44]正在蓬勃发展,以解决实际ANC应用的实际障碍。因此,本研究采用了广泛使用的仿真工具MATLAB,实现McFxLMS算法。此代码可以是容易用于实现共置和完全连接的结构。该文档详细解释了一个MATLAB程序,该程序使用滤波最小均方(FxLMS)算法来模拟前馈多通道有源噪声控制(ANC)算法。具体来说,用户可以自由选择参考麦克风的数量次级声源的数量和误差麦克风的数量。此外,该计划还提供使用GPU加速计算的选择。 详细文档见第4部分。

基于最小均方(McFxLMS)算法的自适应多通道有源噪声控制(MCANC)研究综述

一、最小均方(McFxLMS)算法的定义与特点
  1. 算法定义
    多通道滤波参考最小均方(McFxLMS)算法是单通道FxLMS算法的多通道扩展,其核心目标是通过迭代更新自适应滤波器的权系数,最小化多通道系统中的均方误差(MSE)。其递推公式为:

    其中,xjkm′(n)为经过次级路径估计滤波的参考信号,μ为步长因子,em(n)为第m个误差信号。

  2. 关键特点

    • 计算效率高:无需矩阵求逆或复杂统计量计算,仅需瞬时梯度估计,适用于实时系统。
    • 多通道兼容性:支持任意数量的参考麦克风(JJ)、次级源(KK)和误差麦克风(MM),灵活适应复杂声场。
    • 次级路径补偿:通过次级路径模型(s^mk(n)s^mk​(n))对参考信号预滤波,解决声反馈问题。

    • 稳定性与收敛性:在平稳信号环境中,权系数无偏收敛至维纳解;步长因子μμ需满足0<μ≤1/λmax0<μ≤1/λmax​(λmaxλmax​为输入信号相关矩阵最大特征值)以保证收敛。
二、自适应多通道有源噪声控制(MCANC)的基本原理

MCANC系统基于声波干涉原理,通过次级源生成反相声场以抵消原始噪声。其典型结构包括:

  1. 前馈结构(图1):
    • 参考麦克风:采集噪声信号x(n)x(n)。
    • 次级路径估计器:建模次级源到误差麦克风的传递函数s^mk(n)s^mk​(n)。
    • 自适应滤波器:生成控制信号y(n)y(n),经次级路径后与主噪声叠加产生误差信号e(n)e(n),驱动权系数更新。
  2. 多通道优势
    相比单通道系统,多通道设计可扩展降噪区域,应对空间分布噪声源(如开放窗口、汽车舱内噪声),并通过多误差传感器实现全局优化。
三、McFxLMS在MCANC中的应用现状
  1. 算法实现与优化

    • MATLAB平台:Boxiang Wang(2024)提供开源代码,支持任意通道配置及GPU加速,计算效率提升显著。
    • 硬件部署:Shi等(2019)提出基于FPGA的折叠并行架构(MPBF),将24通道系统的乘加操作(MAC)降低至传统方法的1/(L(M+1))倍,实现实时处理(25 kHz采样率,260 Mbps吞吐量)。
    • 改进算法:如动量MNFxLMS(2023)通过归一化步长和动量项加速收敛,在快速变化噪声(如堆叠噪声)中表现优异。
  2. 应用场景案例

    • 开放窗口降噪:24通道系统对地铁噪声(400-1200 Hz)实现10.1 dB宽带降噪,噪声能量转移至非敏感区域。
    • 车载噪声控制:双通道LFx-NANC系统(2024)基于ADSP-21489控制器,在稳态和加速工况下分别降低驾驶员耳旁噪声5.2 dB和4.8 dB。
    • 虚拟传感技术:Wang等(2024)结合多通道伴随LMS(MCALMS),减少物理误差麦克风数量,在虚拟定位点实现等效降噪效果。
四、现有研究案例
  1. 大规模系统验证
    24×24×24通道MCANC系统(2019)在FPGA上实现,对600 Hz单频噪声最大降噪35.1 dB,验证了McFxLMS的扩展性。
  2. 动态噪声抑制
    Hisagi等(2022)基于PyTorch实现McFxLMS,对飞机、直升机噪声的稳态降噪优于McFxNLMS(步长0.00001),但后者在交通噪声响应速度更优。
  3. 算法对比研究
    Zhang(2023)的仿真表明,McFxLMS在动态噪声跟踪中优于预训练滤波器,平均降噪水平高15%。
五、性能优势与局限性
优势局限性
1. 计算复杂度低,适合实时处理1. 通道数增加时计算量指数增长(O(JKL)O(JKL))
2. 结构简单,易于硬件实现3. 次级路径估计误差导致性能下降
3. 在平稳环境中收敛稳定4. 对非平稳噪声需结合变步长策略
4. 多通道扩展灵活,支持复杂声场5. 收敛速度较慢,需权衡步长与稳定性
六、未来研究方向
  1. 混合架构:结合深度学习预训练与McFxLMS自适应调整,提升非平稳噪声适应性。
  2. 分布式计算:利用边缘计算节点分担多通道计算负载,降低FPGA资源占用。
  3. 虚拟传感优化:探索基于声场重建的虚拟误差点生成技术,减少物理传感器依赖。
七、结论

McFxLMS算法凭借其高效性和灵活性,已成为MCANC系统的核心算法。尽管存在计算复杂度和收敛速度的限制,但通过硬件架构优化(如FPGA并行化)和算法改进(如动量归一化),其在实际工程中的应用前景广阔,尤其在交通、工业噪声控制领域具有重要价值。

📚2 运行结果

部分代码:

%% Generate noise 
fs =  16000;
t  =  40;
T  = 0:1/fs:t ;
len= length(T);
Re = randn(len,1);
%Re = 0.65*sin(2*pi*500*T)' + 0.25*sin(2*pi*300*T)' + 0.15*sin(2*pi*250*T)';
% bf = fir1(512,[0.05 0.1]);
% Re = filter(bf,1,Re);
%% Filtering the reference signal ...
bf = fir1(512,[0.05 0.1]);
Re = filter(bf,1,Re);
%%
Re1 = [Re';Re';Re';Re'];
Dir = zeros(4,len);
for jj = 1:4
    Dir(jj,:) = (filter(Pri(:,jj),1,Re1(jj,:)))';
end
zo = zeros(len,1);
% ReA1 = [Re';zo';zo';zo'];
% ReA2 =  
Red = Re1 ;
%Red = randn(4,len);
%% System configuration 
Wc  = zeros(512,1,4); % Implement a 4-by-4-by-4 full channel FxLMS.
muW = 0.00001;
%% Multichannel FxLMS algorithm 
%---Wc [Filter length x Control unit/ microphone x Reference microphone number]
%---Sec[Filter length x Error number x Speaker number]
a = Multichannel_FxLMS(Wc,Sec,muW);
%---Red is referernce  [Reference microphone number x signal length]
%---Dir is Disturabnce [Error microphone number x signal length]
[E,a]= a.FxLMS_cannceller(Red,Dir);
%% Drawing the figure 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈Matlab代码、数据、文档

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值