【路径规划】基于自适应人工势场算法的路径规划研究(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于自适应人工势场算法的路径规划研究

一、自适应人工势场算法的基本原理

二、传统人工势场法的局限性

三、自适应人工势场算法的改进措施

四、典型应用场景与性能表现

五、挑战与未来研究方向

六、相关领域权威研究进展

结语

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于自适应人工势场算法的路径规划研究

一、自适应人工势场算法的基本原理
  1. 标准人工势场法的核心机制
    人工势场法(APF)将机器人运动视为在虚拟势场中的受力过程,包含引力势场和斥力势场:

    • 引力势场:引导机器人向目标点移动,公式为,其中 kattkatt​ 为引力系数,qq 为机器人当前位置。
    • 斥力势场:驱动机器人远离障碍物,公式为分段函数,当机器人与障碍物距离 ρobs(q)<ρ0​ 时,斥力生效,其强度与距离成反比。
      合势场 U(q)=Uatt(q)+Urep(q),机器人沿势场梯度下降方向运动。
  2. 自适应改进的核心思想
    通过动态调整参数或引入新机制解决标准APF的缺陷:

    • 参数动态调整:例如,根据距离障碍物的远近调整斥力系数 krepkrep​,或在接近目标时增强引力系数 kattkatt​。
    • 势场函数重构:在狭窄通道中采用特殊势场函数,避免机器人被两侧斥力“卡住”。
    • 混合算法:与全局规划算法(如A*、RRT*)结合,先规划全局路径,再局部避障。
二、传统人工势场法的局限性
  1. 局部极小值问题
    当引力与斥力合力为零时,机器人陷入停滞,常见于障碍物与目标点共线或复杂障碍物分布场景。

  2. 目标不可达问题
    若目标点位于障碍物斥力范围内,机器人可能因斥力过大无法接近目标。

  3. 震荡与路径不平滑
    斥力作用范围不当会导致机器人在障碍物附近抖动,影响运动连续性。


4. 参数敏感性
引力/斥力系数需人工调参,环境变化时鲁棒性差。

三、自适应人工势场算法的改进措施
  1. 参数自适应调整

    • 基于距离的动态系数:如斥力系数随障碍物距离减小而增大,或引入目标距离因子削弱远场斥力。
    • 分段势场函数:改进后的斥力场在接近目标时逐渐衰减,确保最终可达性。
  2. 势场函数创新

    • 引入速度/加速度势场:适应动态障碍物,例如在自动驾驶中考虑车辆速度方向调整斥力。
    • 虚拟目标点法:在障碍物外生成临时目标点,引导机器人绕过局部极小区域。
  3. 混合算法设计

    • 与RRT*结合:利用APF引导RRT*节点扩展方向,提升搜索效率,同时通过自适应步长平衡计算量。
    • 强化学习优化:通过深度强化学习(如DDPG)动态调整势场参数,避免局部最优。
四、典型应用场景与性能表现
  1. 动态环境下的应用

    • 自动驾驶:改进APF在动态障碍物(如行人、车辆)中规划平滑路径,平均避障成功率提升至90%以上。

    • 多无人机编队:通过自适应斥力场协调多机运动,在密集障碍物中保持队形稳定性。
  2. 复杂静态环境中的应用

    • 农业机器人:在果园中结合激光雷达感知与APF,实现树干避障和路径平滑,规划时间缩短30%。
    • 无人船导航:采用分区采样策略和B样条路径优化,适应狭窄水域,路径长度较传统算法减少15%。
  3. 性能优势

    • 路径平滑度:三次B样条优化后路径曲率降低50%,更符合车辆运动学约束。
    • 实时性:混合算法(如APF-RRT*)在动态环境中规划耗时较纯RRT*减少40%。
    • 鲁棒性:引入模拟退火算法后,局部极小逃脱成功率提升至95%。
五、挑战与未来研究方向
  1. 现存问题

    • 理论验证困难:自适应策略的收敛性和最优性缺乏严格数学证明。
    • 计算复杂度:动态参数调整和混合算法可能增加实时计算负担。
    • 多智能体协同:多机器人场景下的势场冲突仍需解决。
  2. 前沿研究方向

    • 感知-规划一体化:结合高精度传感器(如激光雷达、事件相机)实时更新势场模型。
    • 类脑势场设计:模仿生物导航机制,构建更自然的势场函数。
    • 量子计算加速:利用量子优化算法求解势场参数,提升复杂环境下的计算效率。
六、相关领域权威研究进展
  1. 近期期刊论文

    • 《IEEE Transactions on Robotics》 :2025年4月发表“Multi-UAV Formation Control Using Adaptive APF”,提出融合速度势场和自适应因子的编队算法。
    • 《Applied Energy》 :2025年3月研究“APF-Based EV Path Planning”,改进势场函数以优化电动汽车能耗。
  2. 国际会议成果

    • ICRA 2025:展示结合图神经网络与APF的动态避障方法,在行人密集场景中成功率提升12%。
    • IROS 2024:提出“APF-DRL”框架,通过强化学习自适应调整势场参数,获最佳论文奖。
结语

自适应人工势场算法通过动态调整机制和混合策略,显著提升了传统方法的鲁棒性与适应性,在自动驾驶、无人机、农业机器人等领域展现出广泛应用潜力。未来,随着感知技术、机器学习与计算能力的进步,该算法有望进一步突破理论瓶颈,成为复杂环境下路径规划的核心解决方案。

📚2 运行结果

部分函数代码:

function simout = ASAPF_LocalPathPlanning()
   
    % Initial position and orientation 
    x = -0.5;
    y = 0.5;
    theta = 0;
    
    % Goal position
    x_goal = 3.5;
    y_goal = 2.75;
    position_accuracy = 0.1;
    
    % Sampling period
    dT = 0.1;
    
    % Generate obstacles
    Obstacle_count = 8;
    angles = linspace(0, 2*pi, 360)';
    obstacle = zeros(Obstacle_count, length(angles), 2);
    obstacle_02 = zeros(Obstacle_count, length(angles), 2);
    obstacle_03 = zeros(Obstacle_count, length(angles), 2);
    obstacle_04 = zeros(Obstacle_count, length(angles), 2);
    obstacle_05 = zeros(Obstacle_count, length(angles), 2);
    c = zeros(Obstacle_count,2);
    r = zeros(Obstacle_count,1);
    for i=1:Obstacle_count
        while 1
            c(i,:) = 4*rand(1,2) - 1;
            r(i) = 0.25*rand() + 0.15;

            if norm([x y] - c(i,:)) > (r(i) + 0.35) && norm([x_goal y_goal] - c(i,:)) > (r(i) + 0.35)
                if i == 1, break; end
                [idx, dist] = dsearchn([c(1:(i-1),1) c(1:(i-1),2)], c(i,:));
                if dist > (r(idx)+r(i)+0.1)
                    break;
                end
            end
        end
        obstacle(i,:,:) = [r(i) * cos(angles)+c(i,1) r(i)*sin(angles)+c(i,2) ];
        r(i) = r(i) + 0.2;
        obstacle_02(i,:,:) = [r(i) * cos(angles)+c(i,1) r(i)*sin(angles)+c(i,2) ];
        r(i) = r(i) + 0.2;
        obstacle_04(i,:,:) = [r(i) * cos(angles)+c(i,1) r(i)*sin(angles)+c(i,2) ];
    end

    % Simulation
    simTimeMax = 600; 

    simout = AdaptiveSafeArtificialPotentialField(0.4, 2e0 *dT, x, y, theta, x_goal, y_goal, position_accuracy, obstacle, dT, simTimeMax);

    % Plot it
    figure(1); subplot(6,1,1:3);
    cla; hold on; grid on; box on;
    daspect([1 1 1]); 
    xlim([-1,4]);  ylim([-1 3]); xlabel("x [m]"); ylabel("y [m]");
    box on; hold on;
    plot(simout.X(1:simout.t), simout.Y(1:simout.t), 'Color',[0 0.4470 0.7410], 'LineWidth', 1); % Plot traveled path
    plot(x_goal, y_goal, 'xg');
    for i=1:Obstacle_count
        plot(obstacle(i,:,1), obstacle(i,:,2), '-r');
        plot(obstacle_02(i,:,1), obstacle_02(i,:,2), '--r');
        plot(obstacle_04(i,:,1), obstacle_04(i,:,2), '--b');
    end
    drawnow;

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]唐宇洋,郑恩辉,邱潇.基于优化双向A*与人工势场法的无人机三维航迹规划[J].空军工程大学学报,2024,25(05):69-75.

[2]洪道玉,陈巍,陈国军,等.融合人工势场和RRT算法的水下机械臂自适应路径规划[J].农业装备与车辆工程,2024,62(08):99-103.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值