💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️竞赛事件及参赛
“中国电机工程学会杯”全国大学生电工数学建模竞赛已成功举办十四届,累计参赛高校千余所,参赛学生近10万人,是目前国内最具影响力、显著提高学生创新意识和综合素质的大学生竞赛项目之一。“中国电机工程学会杯”全国大学生电工数学建模竞赛是全国性大学生学科竞赛活动,目的在于按照紧密结合教学实际,着重基础、注重前沿的原则,促进电气类专业建设;引导学生注重动手能力、创新能力和协作精神的培养;提高学生针对实际问题进行数学建模及分析的综合能力;吸引、鼓励广大学生踊跃参加课外科技活动,为优秀人才脱颖而出服务社会发展创造条件。
电工杯是数学建模竞赛中含金量极高的比赛,并且不需要报名费,很值得参加。
2025 年 5 月 23 日(周五)上午 8 点,电工杯数学建模竞赛将正式拉开帷幕。作为上半年度规模最为宏大的竞赛,电工杯凭借其零报名费的亲民政策,以及由一级学会承办的专业保障,赢得了众多高校的广泛认可与赞誉。
为助力广大参赛者高效备战电工杯,本文将从多个维度展开深度剖析与经验分享。具体涵盖 2025 年竞赛新规解读、对历年赛题选题规律的深入挖掘、近年来优秀获奖论文的精要分享,以及对竞赛模板的细致分析等方面。期望这些内容能为各位参赛者提供切实有效的指导与帮助。
在人工智能蓬勃发展的大背景下,各类数学建模竞赛纷纷针对 AI 的使用制定了明确的规范。例如,美国大学生数学建模竞赛(美赛)要求提交 AI 使用报告,全国大学生数学建模竞赛(国赛)引入了 AIGC 检测机制等。今年,电工杯数学建模竞赛为顺应 AI 时代潮流,积极拥抱这一技术变革,在参赛手册中做出了显著修订。
参赛者须凭借自身能力独立完成所选题目,严禁借助商业化 AI 大模型的 API 来解题或生成答案。所有提交的解答必须为参赛者独立创作,杜绝抄袭他人成果或直接使用他人已有成果。
组委会将对所有参赛论文展开全方位的原创性审查。若论文全文疑似由 AIGC 生成的比例超过 20%,或者全文总相似比超过 40%,则该论文将被判定为雷同论文,参赛者将失去评奖资格。
总结而言,今年竞赛新增了一项重要规定,即严禁直接使用 AI 生成题目结果,同时明确要求 AIGC 率不得高于 20%。基于这一新增要求,个人建议参赛者,若在创作过程中较多地使用了 AI 辅助,可在最终提交论文前,通过知网进行 AIGC 检测(需注意,尽量避免使用 paperbye 等网站进行检测,此类网站的 AIGC 率检测结果往往偏低,容易对参赛者造成误导)。此外,在建模过程和论文写作环节,参赛者应尽可能亲自参与。当然,在遵守 AI 新规定的前提下,大家仍可借助 AI 提供思路、辅助代码生成等工作。
💥1 找程序网站推荐
做到有所了解:
1)模型/函数的输入是什么
2)结果/输出是什么
3)实现的是什么功能
前面两步是找到程序跑通代码,会把输入和一些参数修改运行即可,推荐找程序的网站:
·联合开发网: http://www.pudn.com/
. CSDN专业开发者社区:https://www.csdn.net/
·当码网: http://www.downma.com/
·MATALAB中文论坛:https://www.ilovematlab.cn/
电子发烧会论坛: https://bbs.elecfans.com/jishu_286991_1_1.html
📚2 公式编辑器、流程图、论文排版
比赛时候,博主公式基本不用一个个输入,这里把绝妙分享出来,与卿共勉:
公式编辑器 |
VISIO绘制流程图 |
论文排版 |
利用Word绘制三线表 |
LaTeX基本表格绘制 |
🎉3 电工杯A资源下载
光伏发电是通过半导体材料的光电效应,将太阳能直接转化为电能的技术。光伏电站是由众多光伏发电单元组成的规模化发电设施。
光伏电站的发电功率主要由光伏板表面接收到的太阳辐射总量决定,不同季节太阳光倾角的变化导致了辐照强度的长周期变化,云量、阴雨、雾霾等气象因素导致了辐照强度短周期变化。
当光伏电站接入电网时,光伏电站发电功率的波动会对电网的功率平衡和频率调节带来不利影响。因此,准确预测光伏电站的发电功率,有助于电力调度部门提前安排调度计划,从而确保电网的功率平衡和运行安全。
光伏电站发电功率日前预测是未来24小时至48小时的发电功率进行预测。由于光伏电站上方的云量、阴雨、雾霾等气象因素的不确定性,导致光伏发电功率难以准确预测。因此,如何提升光伏电站发电功率预测精度成为当前工程领域关键技术问题。
为了考察气象条件(辐照、温度、云量等)、地理分布(经纬度、海拔、倾角)、季节等场景因素对光伏电站发电功率预测精度的影响,需要基于较长时段的历史发电功率和数值天气预报(Numerical Weather Prediction, NWP)数据进行佐证分析。为此,参赛者需自行查找符合以下要求的数据集:
表1 光伏电站的历史发电功率和NWP数据规格及要求
数据规格 | 参数值 |
数据来源(公开数据集链接) | |
光伏电站装机容量 | ___MW |
发电功率和NWP数据时间分辨率 | 采样点/15min |
发电功率和NWP数据起始-截至时间(一年) | yyyy.mm.dd- yyyy.mm.dd |
NWP属性 | 例如:气温、辐射、云量等 |
气象及光伏数据的公开获取渠道包括但不限于全球能源预测竞赛(GEFCom)、Kaggle等权威赛事平台;此外,还有ERA5、OPSD、PVOutput、PVWatts、NSRDB和NOMADS等提供相关数据集参考。根据要求,需在论文正文中以表格形式呈现参赛数据集的关键信息,并将完整数据集作为附件提交。
问题1:基于历史功率的光伏电站发电特性分析
基于光伏电站的地理位置信息,结合太阳辐照计算理论可发功率,研究其长周期(季节性变化)和短周期(日内波动)特性。根据实际功率与理论可发功率的偏差,分析光伏电站发电功率特性。
问题2:建立基于历史功率的光伏电站日前发电功率预测模型
建立基于历史功率的光伏电站日前发电功率预测模型,进行发电功率预测,根据附件1中考核要求分析你所采用方法的准确性。
问题3:建立融入NWP信息的光伏电站日前发电功率预测模型
建立融入NWP信息的光伏电站日前发电功率预测模型,进行发电功率预测,根据预测结果,分析评价融入NWP信息能否有效提高预测精度;若可以,请给出提高预测精度的场景划分方案,并进行验证。
问题4:探讨NWP空间降尺度能否提高光伏电站发电功率预测精度
传统气象预报空间分辨率尺度较大(通常在千米级别),而MW级光伏电站覆盖面积可能小于天气预报的空间尺度。在现有的NWP数据基础上,通过机器学习、空间插值、统计模型等得到更小空间尺度的气象预报信息(NWP空间降尺度)可否提高光伏功率预测精度。请结合空间降尺度预测结果,检验方法的可行性,并分析其原因。
建立光伏电站发电功率日前预测模型,要求如下:
(1)训练集与测试集划分要求:第2、5、8、11个月最后一周数据作为测试集,其他数据作为训练集;
(2)预测时间范围:7天,时间分辨率为15分钟,预测结果和实际功率的格式要求填写表2,并以附件的形式上传;
(3)预测误差统计指标计算仅限白昼时段。
表2 第**月7天的功率预测结果
起报时间 | 预报时间 | 实际功率 (MW) | **方法 预测功率 (MW) | …… | **方法 预测功率 (MW) |
2023/2/21/00:00 | 2023/2/22/00:00 | 0 | 0 | 0 | |
2023/2/21/00:00 | 2023/2/22/00:15 | 0 | 0 | 0 | |
2023/2/21/00:00 | 2023/2/22/00:30 | 0 | 0 | 0 | |
2023/2/21/00:00 | 2023/2/22/00:45 | 0 | 0 | 0 | |
2023/2/21/00:00 | 2023/2/22/01:00 | 0 | 0 | 0 | |
…… | …… | …… | …… | …… | …… |
2023/2/27/00:00 | 2023/2/28/23:15 | 0 | 0 | 0 | |
2023/2/27/00:00 | 2023/2/28/23:30 | 0 | 0 | 0 | |
2023/2/27/00:00 | 2023/2/28/23:45 | 0 | 0 | 0 |
注:以上表格内容为样例
完整资源下载:
通过网盘分享的文件:2025年电工杯竞赛赛题.rar
链接: 百度网盘 请输入提取码提取码: iz7y
--来自百度网盘超级会员v6的分享
资源持续更新中:
🌈4 思路、代码、论文
后台回复:25电工杯