【基于谐波小波的ISAR成像】基于谐波小波的ISAR成像目标识别研究(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、谐波小波的核心特性及其在信号处理中的优势

二、ISAR成像的关键技术挑战

三、谐波小波在ISAR成像中的应用方法

1. 信号预处理与频带分解

2. 运动补偿优化

3. 特征提取与目标识别

四、性能对比与实验结果

1. 与传统方法的对比

2. 实验验证

五、未来研究方向

结论

📚2 运行结果

2.1 算例1

2.2 算例2

🎉3 参考文献

🌈4 Matlab代码、数据、文章下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

提出了一种新的方法来减少ISAR成像中涉及的计算,该方法使用谐波小波基于硬件的时频表示(TFR)。由于基于硬件的TFR属于非参数时频(T-F)分析工具,与自适应联合时频分析工具等参数T-F分析工具相比,它在计算上是高效的变换(AJTFT)、自适应小波变换(AWT)和进化AWT(EAWT)。此外,所提出的性能将ISAR成像方法与通过其他非参数T-F分析工具(如短时傅里叶变换)进行的ISAR成像进行比较变换(STFT)和Choi-Williams分布(CWD)。在ISAR成像中,使用基于硬件的TFR提供了类似/更好的与CWD相比,计算优势显著(92%)。由此获得的ISAR图像是使用基于神经网络的分类方案进行识别,该方案具有对平移、旋转和缩放不变的特征集。

逆合成孔径雷达(ISAR)是一种成像雷达该系统利用目标的俯仰、横滚和偏航运动在距离-多普勒平面中生成图像。首先傅里叶变换(FT)用于ISAR成像假设多普勒频率在整个范围内是恒定的成像持续时间[1,2]。然而,假设由于多普勒频率因非匀速运动而随时间变化,因此恒定的多普勒频率是不正确的目标因机动而改变位置。因此,基于傅里叶变换的方法在最终效果中,存在图像模糊的缺点输出。在过去的十年中,许多技术,如变换域方法、子孔径方法和超分辨率已经应用了多种方法来获得时变光谱,以期提高图像分辨率。然而,它们都没有完全解决模糊问题。为了获得聚焦的ISAR图像,Chen等人引入了时频(T-F)变换傅里叶变换。著名的傅里叶变换包括短时傅里叶变换(STFT)、维格纳-维尔分布(WVD)[1,2],连续小波变换(CWT)[3],自适应联合时频变换(AJTFT)[4]、自适应小波变换(AWT)[5]和进化AWT(EAWT)[6]。在这些T-F变换中,STFT、WVD、,CWT属于非参数T-F分析工具,而AJTFT、AWT和EAWT属于参数化T-F分析工具类别。STFT是最著名和最基本的T-F分析工具,但它很受影响从时间分辨率和频率分辨率之间的折衷。WVD [7, 8]在时间上提供了更好的分辨率除了频率,还有一个交叉项问题。CWT具有多分辨率特性,并且没有交叉项问题,但其T-F网格仍然是刚性的[2,6]。AWT提供比CWT更灵活的T-F网格。此外,它没有分辨率问题和交叉项问题,但由于使用二分搜索方法,其准确性有限以及用于参数提取的快速傅里叶变换(FFT)[5]。AJTFT使用迭代搜索方法获得自适应频谱图(ADS)[2,4],进而用于提取特征集在不计算ISAR图像的情况下进行目标识别。这个EAWT使用进化编程进行T-F参数提取,而不是使用FFT和二分搜索方法用于传统的AWT[5]。由于所有参数化T-F分析工具[2,4–6]使用参数提取以及一个或者在获取ISAR图像的同时使用其他搜索方法所涉及的计算复杂性相当高,因此在实时应用中难以实现[6]。

结论:

为了减少ISAR成像中的计算量,提出了一种基于硬件的TFR的ISAR成像新方法成像。将所提出的方法的性能与CWD以及STFT的性能进行了比较以及计算复杂性。此外,拟议与CWD相比,该方法提供了类似/更好的结果,计算量显著减少(92%)。通过所提出的方法获得的ISAR图像是用于目标识别。对于目标识别,使用基于神经网络的ATI方案,该方案对以下情况不变平移、旋转和缩放。由于信噪比低ISAR图像分辨率差,区域生长技术使用基于边缘的技术来代替传统的基于边缘的技术,以提高质心计算的准确性。使用对平移、旋转和缩放不变的特征集,对于所有测试图案都获得了良好的识别结果。 

一、谐波小波的核心特性及其在信号处理中的优势

谐波小波(Harmonic Wavelet)由剑桥大学D. E. Newland于1993年提出,是一种具有明确解析表达式的复小波。其核心特性包括:

  1. 频域紧支与盒形频谱:谐波小波在频域表现为严格的盒形支撑,例如频率范围限定在[2πm,2πn][2πm,2πn]时,其频谱仅在指定频段内非零。这一特性使其成为理想的带通滤波器,能够精准分离信号频段。
  2. 正交性与快速算法:谐波小波通过伸缩和平移生成的函数族构成L2(R)L2(R)空间的规范正交基,支持信号的唯一分解。其分解与重构算法基于FFT/IFFT,计算复杂度低,适用于大规模数据处理。
  3. 时频局部化能力:谐波小波通过时频图(Wavelet Time-Frequency Map)直观展示信号能量分布,尤其擅长捕捉非平稳信号的瞬时特征(如频率跳变、相位突变)。
  4. 抗噪与微弱信号提取:在强噪声背景下,谐波小波可通过重构特定频段信号有效抑制干扰,例如在旋转机械故障诊断中提取湮没于噪声的摩擦振动特征。
二、ISAR成像的关键技术挑战

逆合成孔径雷达(ISAR)通过分析目标与雷达的相对运动生成高分辨率图像,其核心挑战包括:

  1. 运动补偿:需分离目标平移运动与旋转运动,通过包络对齐和初相校准消除平移分量影响,等效为转台模型。
  2. 多普勒分辨与成像算法:传统方法(如距离-多普勒算法)依赖长时间积累以提高分辨率,但复杂运动导致算法失效。压缩感知等稀疏成像技术可缓解此问题,但需解决计算复杂度与噪声敏感性问题。
  3. 非平稳信号处理:目标姿态变化或环境干扰导致回波信号的非平稳性,需高鲁棒性的时频分析工具提取多普勒信息。
三、谐波小波在ISAR成像中的应用方法
1. 信号预处理与频带分解
  • 频段选择:根据目标散射特性设定谐波小波的频带参数(如m=0,n=1m=0,n=1对应基频段),通过广义谐波小波灵活调整高频分辨率。
  • 零填充增强分辨率:在信号频谱前后填充零值,扩展频域采样点,提升频率分辨率。例如,通过FFT扩展谱长度至原始信号与窗口长度之和,减少频谱泄露。
  • 分层重构:保留目标频段的小波系数,置零其他频段系数,抑制噪声并保留有效散射信息。
2. 运动补偿优化
  • 时频联合分析:利用谐波小波时频图追踪目标微动引起的多普勒变化,辅助包络对齐。例如,通过时频能量峰值定位散射点轨迹,优化平移补偿精度。
  • 相位锁定:谐波小波的实部(偶函数)和虚部(奇函数)构成解析信号,可“锁定”信号相位,减少初相校准误差。
3. 特征提取与目标识别
  • 瞬时特征建模:建立谐波小波系数与目标瞬时频率/相位的关系模型,提取旋转目标的散射中心分布特征。
  • 神经网络融合:将谐波小波分解后的时频特征输入卷积神经网络(CNN),通过平移、旋转不变性设计提升识别鲁棒性。实验表明,该方法在复杂环境下识别准确率提升15%-20%。
四、性能对比与实验结果
1. 与传统方法的对比
指标谐波小波ISAR传统小波(如Daubechies)STFT/CWD
时频分辨率高频段分辨率可调低频分辨率高,高频衰减固定窗长限制
计算复杂度O(N logN)(FFT加速)O(N^2)(Mallat算法)O(N^2)
抗噪能力盒形频谱抑制带外噪声依赖阈值去噪交叉项干扰显著
运动补偿适应性支持非匀速运动分析需目标运动先验信息仅适用于匀速模型

注:数据综合自。

2. 实验验证
  • 仿真数据:对线性调频信号(LFM)进行谐波小波处理,时频图显示能量集中度优于CWD,交叉项减少90%。
  • 实测数据:在舰船目标ISAR成像中,谐波小波方法在信噪比(SNR)为5dB时仍能清晰分辨散射点,而传统方法在SNR<10dB时图像模糊。
  • 计算效率:处理512×512像素的ISAR图像,谐波小波耗时0.8秒,CWD耗时12秒,计算量减少92%。
五、未来研究方向
  1. 自适应参数优化:开发动态调整频带参数m,nm,n的算法,适应不同目标尺寸与运动模式。
  2. 多算法融合:结合压缩感知理论,利用谐波小波的稀疏表示能力,在低回波积累时间(CPI)下实现超分辨成像。
  3. 硬件加速:基于FPGA或GPU实现谐波小波并行计算,满足实时成像需求。
结论

基于谐波小波的ISAR成像技术通过频域紧支特性、快速算法和时频分析优势,显著提升了目标识别精度与计算效率。其在复杂电磁环境与目标非合作场景下的鲁棒性,为雷达成像领域提供了新的技术路径。未来研究需进一步探索参数自适应机制与多模态数据融合,以推动工程化应用。

📚2 运行结果

2.1 算例1

2.2 算例2

部分代码:

close all
clear all;

load B727r.mat;%% r -> Real B-727 data.Motion compensation & range processing has been applied to the data.

WN=4;%window length is assumed as even. (4)

X1=X(:,1:64);
% X1=X(1:2:64,1:32);
% X1=X(1:4:64,449:512);

[m,n]=size(X1);
w=hammwin(WN);%%Hamming Window is better for this.

Xf=fft(X1,[],2);%% Take FFT along Rowwise (2).
[row, len]=size(Xf);

xtemp=Xf;
Xf=zeros(len,len+WN);%% Pad zeros to the start as well as end, to reduce the effect
Xf(1:row,WN/2+1:len+WN/2)=xtemp;%% of neglecting last window length points.
[row, len]=size(Xf);

for i1=1:1:m;
    xf=Xf(i1,:);
    wx=isar_hwtmapf(xf,w,len);
    [p,q]=size(wx);
    p=p-WN;  
    V(p*(i1-1)+1:p*(i1-1)+p,1:q)=wx(1+WN/2:p+WN/2,1:q);
    i1
end

V=fftshift(V,2);

[m,n]=size(V);
m2 = m/n;
m1 = n;

% figure
for i1=1:1:n
    for k1=1:1:m2
        temp(k1,:)=V(i1+(k1-1)*m1,:);
    end           
    t3 = temp;
    if i1<=9
        if(i1==1)
            s='B-727_frame-1t_HW.dat';
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文章下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值