理论介绍:
蒙特卡洛方法(Monte Carlo Methods),简称M-C法,又称随机抽样技巧法,其实质是利用随机数,可以说是把某个未知值取作某种概率分布或者概率过程的未知参量,然后根据无作为标本抽出法对它进行统计、推定的一种方法。这个未知值不一定是概率的值,也可以是推定的值。这种思想方法是一种在某种意义上可知的对策(博弈)观点。随着方差减少法的开发和大型超高速计算机的出现,它不仅是仿真诸方法中最重要的—种方法,而且也是系统工程诸方法中最有效的一种方法。
它的一类重要的所求解问题是可以转化为某种随机分布的特征数,比如随机事件出现的概率,或者随机变量的期望值。通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样的数字特征估算随机变量的数字特征,并将其作为问题的解。这种方法多用于求解复杂的多维积分问题。
例题:用蒙特卡洛法求解y=x^2
思路:
在0-4之间生成随机数x,在0-16之间生成随机数y,根据公式y=x^2判断所生成的随机数是否在所求面积部分中。然后计算在所求面积中随机数的比例,乘以64即为所求面积。