如何使用 PyTorch 训练 LLM

本文详细介绍了如何使用PyTorch 2.0.1训练大型语言模型(LLM),包括先决条件(Python、深度学习概念、PyTorch框架),数据加载(如alpaca数据集),模型训练(预训练模型、分词器、训练配置、LoRAConfig、SFTTrainer)和训练执行。通过Hugging Face库和特定的预训练模型,展示了训练过程,强调了在GPU环境下进行训练的优势。
摘要由CSDN通过智能技术生成

大型语言模型 (LLM) 是现代人工智能应用的主要组成部分,尤其是对于自然语言处理。它们具有有效处理和理解人类语言的潜力,其应用范围从虚拟助手和机器翻译到文本摘要和问答。

像 LangChain 这样的库促进了上述端到端AI应用程序的实现。

本文将解释训练大型语言模型的所有过程,从设置工作区到使用 Pytorch 2.0.1 进行最终实现,Pytorch 是一个动态且灵活的深度学习框架,可实现简单明了的模型实现。

先决条件

为了充分利用这些内容,重要的是要熟悉 Python 编程,对深度学习概念和转换器有基本的了解,并熟悉 Pytorch 框架。

在深入研究核心实现之前,我们需要安装并导入相关库。另外,需要注意的是,训练脚本的灵感来自 Hugging Face 的这个存储库

库安装

安装过程详述如下:

首先,我们使用该语句在单个单元格中将安装命令作为 Jupyter Notebook 中的 bash 命令运行。

%%bash

  • Trl:用于通过强化学习训练 transformer 语言模型。
  • Peft 使用参数高效微调 (PEFT) 方法来实现对预训练模型的高效调整。
  • Torch:一个广泛使用的开源机器学习库。
  • 数据集:用于协助下载和加载许多常见的机器学习数据集

Transformers:由 Hugging Face 开发的库,带有数千个预训练模型,用于各种基于文本的任务,例如分类、摘要和翻译。

pip -q install trl
pip -q install peft
pip -q install torch
pip -q install datasets
pip -q install transformers

现在,可以按如下方式导入这些模块:

import torch
from trl import SFTTrainer
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments

数据加载和准备

Hugging Face 上免费提供的 alpaca 数据集将用于此插图。数据集有三个主要列:指令、输入和输出。这些列组合在一起以生成最终的文本列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值