大型语言模型 (LLM) 是现代人工智能应用的主要组成部分,尤其是对于自然语言处理。它们具有有效处理和理解人类语言的潜力,其应用范围从虚拟助手和机器翻译到文本摘要和问答。
像 LangChain 这样的库促进了上述端到端AI应用程序的实现。
本文将解释训练大型语言模型的所有过程,从设置工作区到使用 Pytorch 2.0.1 进行最终实现,Pytorch 是一个动态且灵活的深度学习框架,可实现简单明了的模型实现。
先决条件
为了充分利用这些内容,重要的是要熟悉 Python 编程,对深度学习概念和转换器有基本的了解,并熟悉 Pytorch 框架。
在深入研究核心实现之前,我们需要安装并导入相关库。另外,需要注意的是,训练脚本的灵感来自 Hugging Face 的这个存储库。
库安装
安装过程详述如下:
首先,我们使用该语句在单个单元格中将安装命令作为 Jupyter Notebook 中的 bash 命令运行。
%%bash
- Trl:用于通过强化学习训练 transformer 语言模型。
- Peft 使用参数高效微调 (PEFT) 方法来实现对预训练模型的高效调整。
- Torch:一个广泛使用的开源机器学习库。
- 数据集:用于协助下载和加载许多常见的机器学习数据集。
Transformers:由 Hugging Face 开发的库,带有数千个预训练模型,用于各种基于文本的任务,例如分类、摘要和翻译。
pip -q install trl
pip -q install peft
pip -q install torch
pip -q install datasets
pip -q install transformers
现在,可以按如下方式导入这些模块:
import torch
from trl import SFTTrainer
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
数据加载和准备
Hugging Face 上免费提供的 alpaca 数据集将用于此插图。数据集有三个主要列:指令、输入和输出。这些列组合在一起以生成最终的文本列。