融合一致性正则与流形正则的半监督深度学习算法

本文提出了一种融合一致性正则与流形正则的半监督深度学习算法SmoothMatch,以解决仅依赖一致性正则可能导致相近样本输出差异大的问题。算法结合了样本邻域内的一致性损失和平滑性损失,通过构建图来考虑数据的流形结构,提高了模型的泛化性能。实验表明,该算法在多个图像和文本数据集上的表现优于其他半监督深度学习算法。
摘要由CSDN通过智能技术生成

摘要半监督学习已被广泛应用于大数据分析。目前,基于一致性正则的方法是半监督深度学习的研究热点之一。然而这类方法没有考虑数据的流形结构,可能会导致部分相近的样本得到差异很大的输出,进而导致分类器性能下降。针对这个问题,提出了一种融合一致性正则与流形正则的半监督深度学习算法。该算法在对模型施加一致性约束的同时,对样本构图并加入平滑性损失,实现了每个样本点局部邻域的平滑以及邻近(相连)样本点之间的平滑,从而提高半监督深度学习算法的泛化性能。在多个图像和文本数据集上的实验结果表明,与其他的半监督深度学习算法相比,所提算法更有效。

关键词半监督深度学习 ; 一致性正则 ; 流形正则 ; 平滑性约束

0 引言

随着互联网和信息产业的飞速发展,人们采集与获取数据的能力大大提高,信息量以前所未有的速度增长。世界已进入大数据时代,这些大数据蕴含着巨大的价值,对于社会、经济、科学等各个方面都具有重要的战略意义,为人们更深入地感知、认识和控制物理世界提供了前所未有的丰富信息。大数据时代的到来引发了深度学习的研

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值