转换器之雅可比式


前言

最近发现了一个有意思的工具,世人称其雅可比式,其作为基础工具,他的出现确实提高了生产效率。下面将介绍雅可比的几个运用场景。

一、简介

雅可比行列式通常称为雅可比式,它是以n个n元函数的偏导数为元素的行列式。事实上,在函数都连续可微(即偏导数都连续)的前提下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。

二、隐函数求导法

1. 一个方程的场景

F ( x , y , z ) = 0 F(x, y, z)=0 F(x,y,z)=0 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0, y_0, z_0) P0(x0,y0,z0),若满足 ① F ( P 0 ) = 0 F(P_0)=0 F(P0)=0;② F z ′ ( P 0 ) ≠ 0 F'_z(P_0) \neq 0 Fz(P0)=0,则在 P 0 P_0 P0 的某邻域内可确定 z = z ( x , y ) z=z(x, y) z=z(x,y),且有 ∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ \frac{\partial z}{\partial x}= -\frac{F'_x}{F'_z},\frac{\partial z}{\partial y}= -\frac{F'_y}{F'_z} xz=FzFx,yz=FzFy

2. 方程组的场景

{ F ( x , y , u , v ) = 0 G ( x , y , u , v ) = 0 \begin{cases} F(x, y, u, v) = 0 &\text{} \\ G(x, y, u, v) = 0 &\text{} \end{cases} {F(x,y,u,v)=0G(x,y,u,v)=0 若记 ∣ ∂ F ∂ u ∂ F ∂ v ∂ G ∂ u ∂ G ∂ v ∣ = ∂ ( F , G ) ∂ ( u , v ) \begin{vmatrix} \frac{\partial F}{\partial u}&\frac{\partial F}{\partial v} \\ \\ \frac{\partial G}{\partial u}&\frac{\partial G}{\partial v} \end{vmatrix}=\frac{\partial (F, G)}{\partial (u, v)} uFuGvFvG=(u,v)(F,G)(以后同),当满足 ∂ ( F , G ) ∂ ( u , v ) ≠ 0 \frac{\partial (F, G)}{\partial (u, v)} \neq 0 (u,v)(F,G)=0时,可确定 { u = u ( x , y ) v = v ( x , y ) \begin{cases} u = u(x, y) &\text{} \\ v = v(x, y) &\text{} \end{cases} {u=u(x,y)v=v(x,y),即有 ∂ u ∂ x = − ∂ ( F , G ) ∂ ( x , v ) ∂ ( F , G ) ∂ ( u , v ) , ∂ u ∂ y = − ∂ ( F , G ) ∂ ( y , v ) ∂ ( F , G ) ∂ ( u , v ) \frac{\partial u}{\partial x}= -\frac{\frac{\partial(F, G)}{\partial(x,v)}}{\frac{\partial(F,G)}{\partial(u,v)}}, \frac{\partial u}{\partial y}= -\frac{\frac{\partial(F, G)}{\partial(y,v)}}{\frac{\partial(F,G)}{\partial(u,v)}} xu=(u,v)(F,G)(x,v)(F,G),yu=(u,v)(F,G)(y,v)(F,G) ∂ v ∂ x = − ∂ ( F , G ) ∂ ( u , x ) ∂ ( F , G ) ∂ ( u , v ) , ∂ v ∂ y = − ∂ ( F , G ) ∂ ( u , y ) ∂ ( F , G ) ∂ ( u , v ) \frac{\partial v}{\partial x}= -\frac{\frac{\partial(F, G)}{\partial(u,x)}}{\frac{\partial(F,G)}{\partial(u,v)}}, \frac{\partial v}{\partial y}= -\frac{\frac{\partial(F, G)}{\partial(u,y)}}{\frac{\partial(F,G)}{\partial(u,v)}} xv=(u,v)(F,G)(u,x)(F,G),yv=(u,v)(F,G)(u,y)(F,G)

三、积分换元法

∭ Ω x y z f ( x , y , z ) d x d y d z = z = z ( u , v , w ) x = x ( u , v , w ) y = y ( u , v , w ) ∭ Ω u v w f [ x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ] ∣ ∂ ( x , y , z ) ∂ ( u , v , w ) ∣ d u d v d w . \underset{\Omega_{xyz}}{\iiint} f(x, y, z)dxdydz \xlongequal[z=z(u,v,w)]{x=x(u,v,w) \atop y=y(u,v,w)} \underset{\Omega_{uvw}}{\iiint} f[x(u,v,w), y(u,v,w), z(u,v,w)] \begin{vmatrix} \frac{\partial(x,y,z)}{\partial(u,v,w)} \end{vmatrix}dudvdw. Ωxyzf(x,y,z)dxdydzy=y(u,v,w)x=x(u,v,w) z=z(u,v,w)Ωuvwf[x(u,v,w),y(u,v,w),z(u,v,w)](u,v,w)(x,y,z)dudvdw.
f ( x , y , z ) → f [ x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ] f(x,y,z) \rightarrow f[x(u,v,w),y(u,v,w),z(u,v,w)] f(x,y,z)f[x(u,v,w),y(u,v,w),z(u,v,w)]
∭ Ω x y z → ∭ Ω u v w \underset{\Omega_{xyz}}{\iiint} \rightarrow \underset{\Omega_{uvw}}{\iiint} ΩxyzΩuvw
d x d y d z → ∣ ∂ ( x , y , z ) ∂ ( u , v , w ) ∣ d u d v d w dxdydz \rightarrow \begin{vmatrix} \frac{\partial(x,y,z)}{\partial(u,v,w)} \end{vmatrix}dudvdw dxdydz(u,v,w)(x,y,z)dudvdw
其中
a. { x = x ( u , v , w ) y = y ( u , v , w ) z = z ( u , v , w ) \begin{cases} x=x(u,v,w) \\ y=y(u,v,w) \\ z=z(u,v,w) \end{cases} x=x(u,v,w)y=y(u,v,w)z=z(u,v,w) 是空间 ( x , y , z ) (x,y,z) (x,y,z) 到空间 ( u , v , w ) (u,v,w) (u,v,w) 的一一映射。
b. x = x ( u , v , w ) , y = y ( u , v , w ) , z ( u , v , w ) x=x(u,v,w), y=y(u,v,w), z(u,v,w) x=x(u,v,w),y=y(u,v,w),z(u,v,w),有一阶连续偏导数,且 ∂ ( x , y , z ) ∂ ( u , v , w ) = ∣ ∂ ( x ) ∂ ( u ) ∂ ( x ) ∂ ( v ) ∂ ( x ) ∂ ( w ) ∂ ( y ) ∂ ( u ) ∂ ( y ) ∂ ( v ) ∂ ( y ) ∂ ( w ) ∂ ( z ) ∂ ( u ) ∂ ( z ) ∂ ( v ) ∂ ( z ) ∂ ( w ) ∣ ≠ 0 \frac{\partial(x,y,z)}{\partial(u,v,w)}=\begin{vmatrix} \frac{\partial(x)}{\partial(u)} & \frac{\partial(x)}{\partial(v)} & \frac{\partial(x)}{\partial(w)} \\ \frac{\partial(y)}{\partial(u)} & \frac{\partial(y)}{\partial(v)} & \frac{\partial(y)}{\partial(w)} \\ \frac{\partial(z)}{\partial(u)} & \frac{\partial(z)}{\partial(v)} & \frac{\partial(z)}{\partial(w)}\end{vmatrix} \neq 0 (u,v,w)(x,y,z)=(u)(x)(u)(y)(u)(z)(v)(x)(v)(y)(v)(z)(w)(x)(w)(y)(w)(z)=0

1、直角坐标系转柱面坐标系

① 设: { x = r cos ⁡ ϑ y = r sin ⁡ ϑ z = z \begin{cases} x=r\cos{\vartheta} \\ y=r\sin{\vartheta} \\ z=z \end{cases} x=rcosϑy=rsinϑz=z
② 坐标系转换: ∭ Ω x y z f ( x , y , z ) d x d y d z = ∭ Ω r ϑ z f ( r cos ⁡ ϑ , r sin ⁡ ϑ , z ) ∣ ∂ ( x , y , z ) ∂ ( r , ϑ , z ) ∣ d r d ϑ d z = ∭ Ω r ϑ z f ( r cos ⁡ ϑ , r sin ⁡ ϑ , z ) ∣ ∣ ∂ ( x ) ∂ ( r ) ∂ ( x ) ∂ ( ϑ ) ∂ ( x ) ∂ ( z ) ∂ ( y ) ∂ ( r ) ∂ ( y ) ∂ ( ϑ ) ∂ ( y ) ∂ ( z ) ∂ ( z ) ∂ ( r ) ∂ ( z ) ∂ ( ϑ ) ∂ ( z ) ∂ ( z ) ∣ ∣ d r d ϑ d z = ∭ Ω r ϑ z f ( r cos ⁡ ϑ , r sin ⁡ ϑ , z ) ∣ ∣ cos ⁡ ϑ − r sin ⁡ ϑ 0 sin ⁡ ϑ r cos ⁡ ϑ 0 0 0 1 ∣ ∣ d r d ϑ d z = ∭ Ω r ϑ z f ( r cos ⁡ ϑ , r sin ⁡ ϑ , z ) r d r d ϑ d z \underset{\Omega_{xyz}}{\iiint} f(x, y, z)dxdydz = \underset{\Omega_{r \vartheta z}}{\iiint} f(r\cos{\vartheta}, r\sin{\vartheta}, z) \begin{vmatrix} \frac{\partial(x,y,z)}{\partial(r,\vartheta,z)} \end{vmatrix}dr d\vartheta dz \\ =\underset{\Omega_{r \vartheta z}}{\iiint} f(r\cos{\vartheta}, r\sin{\vartheta}, z) | \begin{vmatrix} \frac{\partial(x)}{\partial(r)} & \frac{\partial(x)}{\partial(\vartheta)} & \frac{\partial(x)}{\partial(z)} \\ \frac{\partial(y)}{\partial(r)} & \frac{\partial(y)}{\partial(\vartheta)} & \frac{\partial(y)}{\partial(z)} \\ \frac{\partial(z)}{\partial(r)} & \frac{\partial(z)}{\partial(\vartheta)} & \frac{\partial(z)}{\partial(z)}\end{vmatrix} |dr d\vartheta dz \\ =\underset{\Omega_{r \vartheta z}}{\iiint} f(r\cos{\vartheta}, r\sin{\vartheta}, z) | \begin{vmatrix} \cos{\vartheta} & -r \sin{\vartheta} & 0 \\ \sin{\vartheta} & r \cos{\vartheta} & 0 \\ 0 & 0 & 1\end{vmatrix} |dr d\vartheta dz \\ =\underset{\Omega_{r \vartheta z}}{\iiint} f(r\cos{\vartheta}, r\sin{\vartheta}, z) r drd \vartheta dz Ωxyzf(x,y,z)dxdydz=Ωrϑzf(rcosϑ,rsinϑ,z)(r,ϑ,z)(x,y,z)drdϑdz=Ωrϑzf(rcosϑ,rsinϑ,z)(r)(x)(r)(y)(r)(z)(ϑ)(x)(ϑ)(y)(ϑ)(z)(z)(x)(z)(y)(z)(z)drdϑdz=Ωrϑzf(rcosϑ,rsinϑ,z)cosϑsinϑ0rsinϑrcosϑ0001drdϑdz=Ωrϑzf(rcosϑ,rsinϑ,z)rdrdϑdz

2、直角坐标系转球面坐标系

① 设: { x = r sin ⁡ φ cos ⁡ ϑ y = r sin ⁡ φ sin ⁡ ϑ z = r cos ⁡ φ \begin{cases} x=r\sin{\varphi}\cos{\vartheta} \\ y=r\sin{\varphi}\sin{\vartheta} \\ z=r\cos{\varphi} \end{cases} x=rsinφcosϑy=rsinφsinϑz=rcosφ
② 坐标系转换: ∭ Ω x y z f ( x , y , z ) d x d y d z = ∭ Ω r ϑ φ f ( r sin ⁡ φ cos ⁡ ϑ , r sin ⁡ φ sin ⁡ ϑ , r cos ⁡ φ ) ∣ ∂ ( x , y , z ) ∂ ( r , ϑ , φ ) ∣ d r d ϑ d φ = ∭ Ω r ϑ φ f ( r sin ⁡ φ cos ⁡ ϑ , r sin ⁡ φ sin ⁡ ϑ , r cos ⁡ φ ) ∣ ∣ ∂ ( x ) ∂ ( r ) ∂ ( x ) ∂ ( ϑ ) ∂ ( x ) ∂ ( φ ) ∂ ( y ) ∂ ( r ) ∂ ( y ) ∂ ( ϑ ) ∂ ( y ) ∂ ( φ ) ∂ ( z ) ∂ ( r ) ∂ ( z ) ∂ ( ϑ ) ∂ ( z ) ∂ ( φ ) ∣ ∣ d r d ϑ d φ = ∭ Ω r ϑ φ f ( r sin ⁡ φ cos ⁡ ϑ , r sin ⁡ φ sin ⁡ ϑ , r cos ⁡ φ ) ∣ ∣ sin ⁡ φ cos ⁡ ϑ − r sin ⁡ φ sin ⁡ ϑ r cos ⁡ φ cos ⁡ ϑ sin ⁡ φ sin ⁡ ϑ r sin ⁡ φ cos ⁡ ϑ r cos ⁡ φ sin ⁡ ϑ cos ⁡ φ 0 − r sin ⁡ φ ∣ ∣ d r d ϑ d φ = ∭ Ω r ϑ φ f ( r sin ⁡ φ cos ⁡ ϑ , r sin ⁡ φ sin ⁡ ϑ , r cos ⁡ φ ) r 2 sin ⁡ φ d r d ϑ d φ \underset{\Omega_{xyz}}{\iiint} f(x, y, z)dxdydz = \underset{\Omega_{r \vartheta \varphi}}{\iiint} f(r\sin{\varphi}\cos{\vartheta}, r\sin{\varphi}\sin{\vartheta}, r\cos{\varphi}) \begin{vmatrix} \frac{\partial(x,y,z)}{\partial(r,\vartheta,\varphi)} \end{vmatrix}dr d\vartheta d\varphi \\ =\underset{\Omega_{r \vartheta \varphi}}{\iiint} f(r\sin{\varphi}\cos{\vartheta}, r\sin{\varphi}\sin{\vartheta}, r\cos{\varphi}) | \begin{vmatrix} \frac{\partial(x)}{\partial(r)} & \frac{\partial(x)}{\partial(\vartheta)} & \frac{\partial(x)}{\partial(\varphi)} \\ \frac{\partial(y)}{\partial(r)} & \frac{\partial(y)}{\partial(\vartheta)} & \frac{\partial(y)}{\partial(\varphi)} \\ \frac{\partial(z)}{\partial(r)} & \frac{\partial(z)}{\partial(\vartheta)} & \frac{\partial(z)}{\partial(\varphi)}\end{vmatrix} |dr d\vartheta d\varphi \\ =\underset{\Omega_{r \vartheta \varphi}}{\iiint} f(r\sin{\varphi}\cos{\vartheta}, r\sin{\varphi}\sin{\vartheta}, r\cos{\varphi}) | \begin{vmatrix} \sin{\varphi}\cos{\vartheta} & -r \sin{\varphi}\sin{\vartheta} & r \cos{\varphi}\cos{\vartheta} \\ \sin{\varphi}\sin{\vartheta} & r \sin{\varphi}\cos{\vartheta} & r \cos{\varphi}\sin{\vartheta} \\ \cos{\varphi} & 0 & -r \sin{\varphi} \end{vmatrix} |dr d\vartheta d \varphi \\ =\underset{\Omega_{r \vartheta \varphi}}{\iiint} f(r\sin{\varphi}\cos{\vartheta}, r\sin{\varphi}\sin{\vartheta}, r\cos{\varphi}) r^2 \sin{\varphi} drd \vartheta d \varphi Ωxyzf(x,y,z)dxdydz=Ωrϑφf(rsinφcosϑ,rsinφsinϑ,rcosφ)(r,ϑ,φ)(x,y,z)drdϑdφ=Ωrϑφf(rsinφcosϑ,rsinφsinϑ,rcosφ)(r)(x)(r)(y)(r)(z)(ϑ)(x)(ϑ)(y)(ϑ)(z)(φ)(x)(φ)(y)(φ)(z)drdϑdφ=Ωrϑφf(rsinφcosϑ,rsinφsinϑ,rcosφ)sinφcosϑsinφsinϑcosφrsinφsinϑrsinφcosϑ0rcosφcosϑrcosφsinϑrsinφdrdϑdφ=Ωrϑφf(rsinφcosϑ,rsinφsinϑ,rcosφ)r2sinφdrdϑdφ

四、二维正态分布判断

( X , Y ) (X,Y) (X,Y) 服从二维正态分布(:概率密度方程见附1) ⟹ ( X , Y ) ⋅ A \Longrightarrow (X,Y) \sdot A (X,Y)A 也服从二维正态分布,其中 A A A 为二阶可逆矩阵。证明如下:
① 设二维随机变量 ( X , Y ) (X,Y) (X,Y) 有连续的联合概率密度 f ( X , Y ) ( x , y ) f_{(X,Y)}(x,y) f(X,Y)(x,y),变换 { u = u ( x , y ) v = v ( x , y ) \begin{cases} u=u(x,y) \\ v=v(x,y) \end{cases} {u=u(x,y)v=v(x,y) 有唯一的反函数 { x = x ( u , v ) y = y ( u , v ) \begin{cases} x=x(u,v) \\ y=y(u,v) \end{cases} {x=x(u,v)y=y(u,v) x ( u , v ) x(u,v) x(u,v) y ( u , v ) y(u,v) y(u,v) 有连续偏导数
② 二维随机变量 ( U , V ) = ( U ( X , Y ) , V ( X , Y ) ) (U,V)=(U(X,Y),V(X,Y)) (U,V)=(U(X,Y),V(X,Y)) 的联合概率密度为 f ( U , V ) ( u , v ) = f ( X , Y ) ( x ( u , v ) , y ( u , v ) ) ⋅ ∣ J ∣ f_{(U,V)}(u,v)=f_{(X,Y)}(x(u,v),y(u,v)) \sdot |J| f(U,V)(u,v)=f(X,Y)(x(u,v),y(u,v))J 其中 J J J 为雅可比行列式,且 J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ ( x ) ∂ ( u ) ∂ ( x ) ∂ ( v ) ∂ ( y ) ∂ ( u ) ∂ ( y ) ∂ ( v ) ∣ ≠ 0 J=\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix} \frac{\partial(x)}{\partial(u)} & \frac{\partial(x)}{\partial(v)} \\ \frac{\partial(y)}{\partial(u)} & \frac{\partial(y)}{\partial(v)} \end{vmatrix} \neq 0 J=(u,v)(x,y)=(u)(x)(u)(y)(v)(x)(v)(y)=0 因此 ( U , V ) (U, V) (U,V) 服从二维正态分布。

1、经典例题

( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 , σ 2 ; ρ ) (X,Y) \sim N(\mu_1,\mu_2, \sigma_{1}, \sigma_{2}; \rho) (X,Y)N(μ1,μ2,σ1,σ2;ρ),令 U = X − μ 1 σ 1 U=\frac{X-\mu_{1}}{\sigma_{1}} U=σ1Xμ1 V = Y − μ 2 σ 2 V=\frac{Y-\mu_{2}}{\sigma_{2}} V=σ2Yμ2,证明: ( U , V ) (U,V) (U,V) 服从二维(标准)正态分布。
证明:
① 因为 { x = σ 1 u + μ 1 y = σ 2 v + μ 2 \begin{cases} x=\sigma_{1}u+\mu_{1} \\ y=\sigma_{2}v+\mu_{2} \end{cases} {x=σ1u+μ1y=σ2v+μ2
② 因此 J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ ( x ) ∂ ( u ) ∂ ( x ) ∂ ( v ) ∂ ( y ) ∂ ( u ) ∂ ( y ) ∂ ( v ) ∣ = ∣ σ 1 0 0 σ 2 ∣ = σ 1 σ 2 J=\frac{\partial(x,y)}{\partial(u,v)} =\begin{vmatrix} \frac{\partial(x)}{\partial(u)} & \frac{\partial(x)}{\partial(v)} \\ \frac{\partial(y)}{\partial(u)} & \frac{\partial(y)}{\partial(v)} \end{vmatrix} =\begin{vmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{2} \end{vmatrix} =\sigma_{1}\sigma_{2} J=(u,v)(x,y)=(u)(x)(u)(y)(v)(x)(v)(y)=σ100σ2=σ1σ2
③ 故可得 f ( U , V ) ( u , v ) = f ( X , Y ) ( σ 1 u + μ 1 , σ 2 v + μ 2 ) ⋅ σ 1 σ 2 = 1 2 π 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) ⋅ ( u 2 − 2 ρ u v + v 2 ) f_{(U,V)}(u,v)=f_{(X,Y)}(\sigma_{1}u+\mu_{1},\sigma_{2}v+\mu_{2}) \sdot \sigma_{1} \sigma_{2}=\frac{1}{2\pi\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)} \sdot (u^2-2\rho uv+v^2)} f(U,V)(u,v)=f(X,Y)(σ1u+μ1,σ2v+μ2)σ1σ2=2π1ρ2 1e2(1ρ2)1(u22ρuv+v2)
( U , V ) ∼ N ( 0 , 0 , 1 , 1 ; ρ ) (U,V) \sim N(0,0,1,1;\rho) (U,V)N(0,0,1,1;ρ)


总结

雅克比式如同一个转换器,当运用于积分时,可以将基于某个参考系的积分转换为基于另一个方便计算的参考系而不用思考其转换细节。雅克比式屏蔽掉了复杂的转换过程,将不同的转换思维过程抽象为了计算雅克比行列式。如本文中阐述的,将直角坐标系下的积分分别转换为柱面坐标系下的积分和球面坐标系下的积分。通过雅克比式转换就可以忽略掉柱面坐标系下的积分和球面坐标系下的积分的具体过程。

附录

附1:

( X , Y ) (X,Y) (X,Y) 服从二维正态分布,即 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 , σ 2 ; ρ ) (X,Y) \sim N(\mu_1,\mu_2, \sigma_{1}, \sigma_{2}; \rho) (X,Y)N(μ1,μ2,σ1,σ2;ρ),则 ( X , Y ) (X,Y) (X,Y) 的概率密度为:
f ( X , Y ) ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) ⋅ [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } f_{(X,Y)}(x,y)=\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^2}} \exp\{{\frac{-1}{2(1-\rho^2)} \sdot [\frac{(x-\mu_{1})^2}{\sigma_{1}^2}-\frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^2}{\sigma_{2}^2}]}\} f(X,Y)(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)2σ1σ22ρ(xμ1)(yμ2)+σ22(yμ2)2]}

  • 15
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值