毫无疑问,全栈型的算法工程师将更为抢手,如果你精通大模型从训练到应用的整个流程,你走到哪里都不怕。
但往往人的精力有限,如果从数据、预训练、微调、对齐、推理、应用几个方面来看的话,个人觉得“预训练>数据>应用>对齐>推理>微调”。
先说一下各个方向的特点,再说我为啥这么排序吧。纯个人看法,不喜勿喷,但交流欢迎讨论(叠甲叠甲)。
数据方面
不可否认的一点,现在很多算法工程师,都可以称为数据工程师,在模型调优的绝大时间里,其实都在做数据相关的工作,无论是数据爬取、数据构造,还是数据清洗。
“garbage in, garbage out”也是业界公认,数据的质量和数据量决定着模型的效果。这也是为什么都是基于llama的模型,都用lora方法训练,你的模型效果不行的原因,很多时候是数据层面的因素,可能是你的数据并没有很好的激发出模型本身的性能,也可能是给模型灌入的知识质量很差。
对于数据方面,已经有很多工作,但哪些有效,哪些适合你自己的场景,对于你自己的场景是否有更好地数据构造、清洗方法,都是算法工程师要考虑的事情。
预训练方面
大模型时代可以做真正做预训练的企业非常少,做该部分工作的算法工程师也就更少。(当然用20B Token数据,对1B参数模型预训练,咱不算哈)
真正对千万级别参数大模型进行几T tokens进行预训练的,对机器要求很高。在多机之间通信过程中,会存在很多问题,训练过程中也会出现很多问题,那么如何解决这些问题,是十分宝贵的经验。
由于真正有机会做这些的人少之又少,所有该部分算法工程师很宝贵,毕竟物以稀为贵。如果有了这些人,也许可以少走很多坑,或者说可以更快的训练出大模型。
微调方面
现在网上开源项目很多,微调基本上已经成为了有手就行。把数据准备好,环境准备好,甚至可以web-ui一键训练。全参、lora、qlora等等方法已经成为了很多项目的标配。
可能当你任务有特殊要求时,会简单修改一些dataloader部分,trainer、deepspeed基本就是config参数配置。
现在基本上在面试实习生的时候,人手标配,微调过xxxx模型,然后细节一概不知,反正就是跑起来了。
对齐方面
无论是人类偏好对齐,还是安全性对齐,对于ToC端大模型是必要的,这样可以大幅度提高模型的友好性。对齐过程也是坑比较多,有时模型对着对着,就炸了,开始不说人话了。
llama2是根据多种reward模型进行rlhf对齐,现在也有很多简单高效的对齐方法,比如DPO、ORPO等,但实际训练过程中也是一言难尽,需要深入研究。反正我对齐不好,就是怪数据不行。
但对于ToB)端来说,貌似对齐的意义不大,因为很大程度上,大模型已经被限制了仅在固定场景中使用,或者即使内部出现不安全问题,也不会引发公众影响,ToB更关心的是效果。
推理方面
大模型参数太大了,对于推理资源的消耗是巨大的,因此加速大模型推理速度、减少大模型推理资源是十分重要的。
随着时代的发展,相信以后端侧大模型会越来越多,直接把大模型部署在手机上,有效解决推理资源的问题;并且现在很多模型都支持100K以上的Token,如何提升用户体验、减少自己的硬件资源消耗,是至关重要的。
现在推理加速框架也是很多,例如:vllm、fastllm、llamacpp等等,但很多大厂有自己更好的一套,比较轮子不能白造。
应用方面
大模型最简单的形态是以Chat形式展现,但可以有更好的产品形态,让用户在某些场景可以更好地利用大模型的能力,来解决核心问题。那么就需要将大模型包装成一个好的产品,需要更好地激发大模型能力。
其实上面在说各个方面特点的时候,你应该就可能知道我为啥觉得“预训练>数据>应用>对齐>推理>微调”了。
因为掌握预训练的人才较少,毕竟物以稀为贵;而数据由是大模型的重点,毕竟有多少数据就有多少智能嘛;对齐主要是很多场景真没必要,毕竟我是做ToB较多,认知也许比较狭隘了;推理其实主要是很多开源框架已经支持的很好了,感觉对于很多厂商来说也许开源就够用了;微调到现在这个阶段,真快成为了有手就行。
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
路线图很大就不一一展示了 (文末领取)
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
👉GitHub海量高星开源项目👈
💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告(持续更新)👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓