对于大模型的预训练(Pre-training)、微调(Fine-tuning)和蒸馏(Distillation),初学者往往感到难以区分。这三者虽然都属于模型训练的范畴,但在目标、数据以及实现方式上却有着明显的不同。
预训练就像是给模型进行“通识教育”(类似大学基础课程),它使用的是海量的无标注数据(比如互联网文本、图像库);微调相当于对模型开展“专业培训”(如同入职后的岗位技能培训),所采用的是专业领域的标注数据(例如医疗影像、法律文书、代码库);蒸馏则类似于“经验传承”(好比老员工带新人),其数据来源是教师模型的输出(像概率分布、推理链)。

1、预训练(Pre-training)
预训练(Pre-training):大学通识教育
使模型“懂得思考”,拥有通用能力。
(1)目标:让模型拥有通用能力,掌握语言、图像等底层规律。
(2)数据:大量无标注/弱标注数据(例如互联网文本、图像库)。
(3)效果:模型具备基础能力,却没有针对特定任务的精细技能(好比“通过面试但还没上岗”)。
预训练借助海量无标注数据(比如互联网文本),让大语言模型(LLM)接受大学通识教育(像数学、物理、英语)。这就如同大学生先学习基础学科,为日后的专业方向筑牢基础。
预训练(Pre-training)堪称暴力美学,依靠堆砌算力,达成Scaling Low。但这条道路目前有些停滞,原因是大模型可学习的互联网高质量数据已接近耗尽,传统依靠大规模预训练和模型扩张的发展途径正遭遇瓶颈。

2、微调(Fine-tuning)
微调(Fine-tuning):可类比为专业培训(即员工入职后的岗位技能培训)。
其核心是让模型“掌握实际工作能力”,针对具体任务进行优化。
(1)目标:使模型在特定任务中展现出色表现。
(2)数据:需采用专业领域的标注数据(例如医疗影像、法律文书、代码库等)。
(3)效果:模型在特定任务上能达到较高精度(相当于“具备上岗工作的能力”)。*
大语言模型以预训练模型为基础,借助大量标注数据实施微调(调整模型最后几层的参数),进而习得垂直领域的专项技能。这就如同医生入职后学习专科知识(如心内科、骨科知识),针对具体岗位提升自身技能水平。
微调(Fine-tuning)是当前将通用大模型转化为垂直大模型的有效方法。其中,Adapter微调是在预训练模型中插入轻量级模块(如Adapter层),仅对这些模块进行训练,以此减少参数更新量;而LoRA微调则通过低秩矩阵分解,降低微调过程中的参数更新量,提高效率。

3、蒸馏(Knowledge Distillation)
蒸馏(Knowledge Distillation):可类比为经验传承(如同老员工带新人)。
其核心是让模型实现“经验传承”,把大模型的知识与能力迁移到小模型上。
(1)目标:将大模型(充当“教师”角色)所具备的知识,迁移至小模型(充当“学生”角色)。
(2)数据:主要依托教师模型的输出结果(例如概率分布、推理链条等)。
(3)效果:学生模型在保持自身轻量化特性的同时,能够习得教师模型的经验(类似于“新人快速熟悉工作、上手操作”)。
小模型通过蒸馏的方式,学习大模型(教师)的“软标签”(像概率分布)或者推理过程。这就好比老员工向新人传授自身积累的经验,而非让新人仅局限于学习书本上的理论知识。
大模型虽然性能出色,但在部署时成本较高(比如存在推理延迟、占用内存大等问题)。而蒸馏技术通过将大模型(教师模型)的“隐性知识”迁移到小模型(学生模型),能够实现轻量化部署,同时保留核心能力。这一技术可以有效解决AI在资源有限、对隐私保护要求高、垂直领域应用等场景中的落地难题。

那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~

👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。


👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。

👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。

👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。

👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!
 
                   
                   
                   
                   
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   1272
					1272
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            