二分查找示例2(寻找峰值)

题目:

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设 nums[-1] = nums[n] = -∞ 。

你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

示例 1:

输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。

示例 2:

输入:nums = [1,2,1,3,5,6,4]
输出:1 或 5 
解释:你的函数可以返回索引 1,其峰值元素为 2;
     或者返回索引 5, 其峰值元素为 6。

提示:

  • 1 <= nums.length <= 1000
  • -231 <= nums[i] <= 231 - 1
  • 对于所有有效的 i 都有 nums[i] != nums[i + 1]

算法原理:

寻找二段性(二分查找的精髓所在,无所谓数组有序/无序,只要有二段性,就可以使用二分查找):

取得任意一个点i,和下一个点i+1:

1 arr[i] > arr[i + 1] :此时「左侧区域」⼀定会存在⼭峰(因为最左侧是负无穷),那么我们可以去左侧去寻找结果,即right=i(注意,arr[i]也可能是峰值)

2 arr[i] < arr[i + 1] :此时「右侧区域」⼀定会存在⼭峰(因为最右侧是负无穷),那么我们可以去右侧去寻找结果,即left=i+1(注意,arr[i+1] 也可能是峰值)

代码实现:

class Solution 
{
public:
    int findPeakElement(vector<int>& nums) 
    {
        int left = 0;
        int right = nums.size()-1;
        while(left<right)
        {
            int mid = left+(right-left)/2;
            if(nums[mid]>nums[mid+1])
            {
                right = mid;
            }
            else
            {
                left = mid+1;
            }
        }
        return left;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值