题目:
峰值元素是指其值严格大于左右相邻值的元素。
给你一个整数数组 nums
,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。
你可以假设 nums[-1] = nums[n] = -∞
。
你必须实现时间复杂度为 O(log n)
的算法来解决此问题。
示例 1:
输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。
示例 2:
输入:nums = [
1,2,1,3,5,6,4]
输出:1 或 5
解释:你的函数可以返回索引 1,其峰值元素为 2;
或者返回索引 5, 其峰值元素为 6。
提示:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
- 对于所有有效的
i
都有nums[i] != nums[i + 1]
算法原理:
寻找二段性(二分查找的精髓所在,无所谓数组有序/无序,只要有二段性,就可以使用二分查找):
取得任意一个点i,和下一个点i+1:
1 arr[i] > arr[i + 1] :此时「左侧区域」⼀定会存在⼭峰(因为最左侧是负无穷),那么我们可以去左侧去寻找结果,即right=i(注意,arr[i]也可能是峰值)
2 arr[i] < arr[i + 1] :此时「右侧区域」⼀定会存在⼭峰(因为最右侧是负无穷),那么我们可以去右侧去寻找结果,即left=i+1(注意,arr[i+1] 也可能是峰值)
代码实现:
class Solution
{
public:
int findPeakElement(vector<int>& nums)
{
int left = 0;
int right = nums.size()-1;
while(left<right)
{
int mid = left+(right-left)/2;
if(nums[mid]>nums[mid+1])
{
right = mid;
}
else
{
left = mid+1;
}
}
return left;
}
};