FM接收机及正交鉴频器设计
设计一个单信道超外差结构的 FM 接收机,使用Multisim验证频点和带宽是否满足需求。
功能需求如下:
- 接收机接收到的已调信号工作频点为 30MHz,最大频偏为 15KHz,调制指数为3,最大振幅为100的调频信号。下混频器可以将已调信号搬移至10.7MHz 的中频频点。解调器输入的中频信号振幅至少为 100mV。
请用数学方法描述接收机的工作过程,并测量接收机中频输出的频点和带宽,
与理论计算结果进行比较。 - 为发射机设计正交鉴频器(包括后级低频放大器和滤波器),实现对调频信号
的无失真鉴频输出。要求如下:
(1)设计连续移相网络,将输入调频信号的频率变化转换为相位变化。
(2)设计乘积型鉴相器,检测相位变化。可以使用虚拟器件和集成电路模块。
(3)指标要求:鉴频曲线中心点位于调频载波频率上,上下峰值点基本对称,
线性范围大于 100KHz。
(4)测试用调频波:载频10.7MHz,幅度有效值为100mV,调制信号频率为1KHz,频偏 10KHz。可以使用调频信号发生器作为测试输入。
1 单信道超外差式FM接收机设计及仿真验证
1.1 FM超外差式接收机结构框图
FM超外差式接收机结构框图如图1-1所示:
图 1-1 FM超外差式接收机结构框图
1.2 FM超外差式接收机数学描述分析
FM调频波的表达式为:
v ( t ) = V c m cos ( ω c t + m f sin Ω t ) v ( t ) = V_{c m} \cos \left( \omega_{c} t + m_{f} \sin \Omega t \right) v(t)=Vcmcos(ωct+mfsinΩt)
其中, m f = Δ ω m Ω = Δ f m F m_{f} = \frac{\Delta \omega_{m}}{\Omega} = \frac{\Delta f_{m}}{F} mf=ΩΔωm=FΔfm,F为调制信号频率, Δ f m \Delta f_{m} Δfm为最大频偏。
题意要求接收机收到的已调信号为:工作频点 ω c = 30 M H z \omega_{c} = 3 0 M H z ωc=30MHz,最大频偏 Δ f m = 15 k H z \Delta f_{m} = 15 k H z Δfm=15kHz,调制指数为 m f = 3 m_{f} = 3 mf=3,最大振幅为 V c m = 100 μ V V_{c m} = 1 0 0 \mu V Vcm=100μV的调频信号。
于是,调制信号的频率为5kHz,调频波的带宽为:
B W C R = 2 ( Δ f m + F ) = 2 × ( 15 k H z + 5 k H z ) = 40 k H z B W_{C R} = 2 \left( \Delta f_{m} + F \right) = 2 \times ( 1 5 k H z + 5 k H z ) = 4 0 k H z BWCR=2(Δfm+F)=2×(15kHz+5kHz)=40kHz
下混频器可以将已调信号搬移至10.7MHz 的中频频点。混频器的本振信号表达式为:
V L O ( t ) = V L O c o s ω L O t V_{L O} ( t ) = V_{L O} c o s \omega_{L O} t VLO(t)=VLOcosωLOt
则本振信号频率为:
ω L O = 30 M H z − 10.7 M H z = 19.3 M H z \omega_{L O} = 3 0 M H z - 1 0 . 7 M H z = 1 9 . 3 M H z ωLO=30MHz−10.7MHz=19.3MHz
下混频器输出电压表达式为:
V 1 ( t ) = V c m cos ( ω c t + m f sin Ω t ) × V L O cos ω L O t V_{1} ( t ) = V_{c m} \cos \left( \omega_{c} t + m_{f} \sin \Omega t \right) \times V_{L O} \cos \omega_{L O} t V1(t)=Vcmcos(ωct+mfsinΩt)×VLOcosωLOt
于是,下混频器输出电压包含的频率分量主要集中在10.7MHz与49.3MHz的频点处。因此使用带通滤波器滤出10.7MHz频点处的中频信号即可。
1.3 仿真设计与验证
中频信号的滤波器采用最大平坦带通滤波器进行设计,原理图如图2-2所示。
图 1-2最大平坦带通滤波器原理图
使用在线软件进行设计,滤波器阶数设为4阶,中心频率为10.7MHz,带宽为1MHz,输出阻抗为50Ω
微波射频网——最大平坦带通滤波器计算器
图 1-3最大平坦带通滤波器设计
下混频器使用Multisim虚拟模拟乘法器实现,增益为1V/V,得到下混频器及中频带通滤波器电路图如图1-4所示。
图1-4下混频器及中频滤波器电路原理图
由于题目要求,解调器输入的中频信号振幅至少为100mV,而FM输入信号振幅仅为100 μ V \mu V μV,因此在带通滤波器后级接入五级同相比例放大器,对中频信号进行线性放大。
图1-5 中频放大器设计
测量中频输出电压波形、振幅、频点及带宽。
输出波形图如图1-6所示,符合FM调频信号的特征。
图 1-6中频点输出波形图
输出电压有效值约为186mV大于100mV,符合题意要求,且输出电压频率为10.7MHz,在中频频点处。
图 1-7输出电压探针数据测量
使用频率计数器对中频输出电压频率进行测量,得到频率摆动范围为 10.685 M H z ∼ 10.715 M H z 1 0 . 6 8 5 M H z \sim 1 0 . 7 1 5 M H z 10.685MHz∼10.715MHz,符合 Δ f m = 15 k H z \Delta f_{m} = 1 5 k H z Δfm=15kHz的最大频偏理论值。
图 1-8 输出电压频偏测量
使用频谱分析仪测量中频输出信号的频谱,带宽约为41kHz,与理论计算值近似。
图 1-9输出电压频谱测量
2 正交鉴频器设计
2.1 移相网络设计
FM接收机的解调器部分由正交鉴频器构成,正交鉴频器由频相转换网络与乘积型鉴相器组成,将输入调频波的频率变化转换为输出信号的一个附加相移,并用鉴相器转换为输出信号电压的变化,其原理图如图2-1所示。
图 2-1正交鉴频器原理图
对于移相网络的参数估算,根据
Δ φ = − a r c t g ξ = − a r c t g 2 Q e Δ ω ( t ) ω c \Delta \varphi = - a r c t g \xi = - a r c t g 2 Q_{e} \frac{\Delta \omega ( t )}{\omega_{c}} Δφ=−arctgξ=−arctg2QeωcΔω(t)
确定能确保移相网络为线性相移的回路Q值。
线性相移要求:
∣ Δ φ ∣ < π 6 | \Delta \varphi | < \frac{\pi}{6} ∣Δφ∣<6π
即
ξ
<
t
g
π
6
=
0.577
\xi < t g \frac{\pi}{6} = 0 . 5 7 7
ξ<tg6π=0.577
于是,确保不失真解调的Q值为:
Q e < 0.577 f c 2 Δ f m = 0.577 × 10.7 M H z 2 × 15 k H z = 205.797 Q_{e} < 0 . 5 7 7 \frac{f_{c}}{2 \Delta f_{m}} = 0 . 5 7 7 \times \frac{1 0 . 7 M H z}{2 \times 1 5 k H z} = 2 0 5 . 7 9 7 Qe<0.5772Δfmfc=0.577×2×15kHz10.7MHz=205.797
取 Q e = 200 Q_{e} = 2 0 0 Qe=200,移相网络中 R p R_{p} Rp一般取 20 k Ω ∼ 60 k Ω 2 0 k \Omega \sim 6 0 k \Omega 20kΩ∼60kΩ, C 1 C_{1} C1一般取 5 ∼ 10 p F 5 \sim 1 0 p F 5∼10pF。
ω 0 = 2 π × 10.7 M H z \omega_{0} = 2 \pi \times 1 0 . 7 M H z ω0=2π×10.7MHz,取 R p = 20 k Ω R_{p} = 2 0 k \Omega Rp=20kΩ, C 1 = 10 p F C_{1} = 1 0 p F C1=10pF,根据
Q e = R P ω 0 L Q_{e} = \frac{R_{P}}{\omega_{0} L} Qe=ω0LRP
则电感 L = 1.4874 μ F L = 1 . 4 8 7 4 \mu F L=1.4874μF。
根据
ω 0 = 1 L ( C 1 + C ) = ω c \omega_{0} = \frac{1}{\sqrt{L ( C_{1} + C )}} = \omega_{c} ω0=L(C1+C)1=ωc
于是电容 C = 138.786 μ F C = 1 3 8 . 7 8 6 \mu F C=138.786μF。
得到移相网络电路图如图2-2所示。
图 2-2移相网络电路原理图
理论移相网络幅频特性曲线与相频特性曲线如图2-3所示,在 ω 0 \omega_{0} ω0处输入信号V1与输入信号V2正交, φ A = π 2 \varphi_{A} = \frac{\pi}{2} φA=2π,相位差与频偏成正比。
图 2-3移相网络幅频特性曲线与相频特性曲线
对电压探针2进行交流扫频分析,得到幅频特性曲线与相频特性曲线如图2-4所示。在10.7MHz附近 φ A = π 2 \varphi_{A} = \frac{\pi}{2} φA=2π,实际曲线特征与理论曲线特征相符。说明移相网络设计满足题意要求。
图 2-4移相网络幅频特性曲线与相频特性曲线
2.2 乘积型鉴相器设计
乘积型鉴相器由模拟乘法器和低通滤波器组成,首先使用虚拟模拟乘法器进行设计。
低通滤波器电阻R取3k Ω \Omega Ω,C取0.01 μ F \mu F μF,则低通滤波器的上限截至频率为:
f 0 = 1 2 π R C = 5350 H z f_{0} = \frac{1}{2 \pi R C} = 5 3 5 0 H z f0=2πRC1=5350Hz
正交鉴频器整体电路图如图2-5所示。
图 2-5正交鉴频器仿真电路原理图
当输入测试调频波信号:载频10.7MHz,幅度有效值为100mV,调制信号频率为1KHz,频偏10KHz时,正交鉴频器输出波形图如图2-6所示。
测得解调所得信号的频率约为 f = 1 996.483 μ s = 1003.52 H z f = \frac{1}{9 9 6 . 4 8 3 \mu s} = 1 0 0 3 . 5 2 H z f=996.483μs1=1003.52Hz,与调制信号频率1000Hz接近,误差较小,符合题意要求。
图 2-6正交鉴频器输出波形图
2.3 正交鉴频器指标验证
由于Multisim虚拟模拟乘法器不能进行AC扫频交流分析,因此需采用集成电路进行设计,验证正交鉴频曲线。
模拟乘法器使用AD834,其为ANALOG DEVICES的一款500 MHz四象限乘法器。
AD834集成电路内部原理图如图2-7所示。
图 2-7 AD834模拟乘法器原理图
参考AD官方 MT-079模拟乘法器设计指南中的AD834的基本连接进行设计。
图 2-8 AD834参考设计
从AD官方的AD834数据手册及产品说明处下载AD834spice仿真模型并导入Multisim进行仿真设计与验证。
得到仿真电路原理图如图2-9所示。
图 2-9基于AD834设计正交鉴频器
使用AC交流分析,对电压探针3进行9MHz~13MHz扫频,得到输出幅频特性曲线与相频特性曲线如图2-10所示。
图 2-10正交鉴频幅频特性与相频特性曲线
鉴频曲线为S型,与理论鉴频曲线相符,其中鉴频曲线中心点位于调频载波频率10.7MHz上,且上下峰值点基本对称。
图 2-11理论鉴频曲线
测得线性鉴频范围 2 Δ f m ≈ 400 k H z > 100 k H z 2 \Delta f_{m} \approx 400 k H z > 1 0 0 k H z 2Δfm≈400kHz>100kHz。