【模糊集合】示例

【模糊集合】隶属函数、关系与运算

例1

X=\{x_{1},x_{2},x_{3},x_{4},x_{5}\}\underset{\sim}A,\underset{\sim}B\in\mathcal{F}(X)

\underset{\sim}A={\frac{0.4}{x_{1}}}+{\frac{0.6}{x_{2}}}+{\frac{1}{x_{3}}}+{\frac{0.6}{x_{4}}}+{\frac{0.4}{x_{5}}},\ \underset{\sim}B={\frac{0.2}{x_{2}}}+{\frac{0.8}{x_{3}}}+{\frac{0.2}{x_{4}}}.

分别进行交、并、补运算,有:

$X$上模糊集合的全体组成的集合称为$X$的模糊幂集,记为$\mathcal{F}(X)$,fuzzy

\underset{\sim}A\cap \underset{\sim}B=\frac{0.2}{x_{2}}+\frac{0.8}{x_{3}}+\frac{0.2}{x_{4}}

\underset{\sim}A\cup \underset{\sim}B=\frac{0.4}{x_{1}}+\frac{0.6}{x_{2}}+\frac{1}{x_{3}}+\frac{0.6}{x_{4}}+\frac{0.4}{x_{5}}

\underset{\sim}A^{c}=\frac{0.6}{x_{1}}+\frac{0.4}{x_{2}}+\frac{0.4}{x_{4}}+\frac{0.6}{x_{5}}

\underset{\sim}B^{c}=\frac{1}{x_{1}}+\frac{0.8}{x_{2}}+\frac{0.2}{x_{3}}+\frac{0.8}{x_{4}}+\frac{1}{x_{5}}

上述为模糊集合的Zadeh记法,其中的“+”号不表示分式求和,仅作为一种记号,\frac{\mu_{\underset{\sim}{A}}(x_i)}{x_i}表示{x_i}\underset{\sim}{A}的隶属度为{\mu_{\underset{\sim}{A}}(x_i)}

 交、并、补运算实际上是分别对隶属度取下确界、上确界和余。例如x_1\underset{\sim}A,\underset{\sim}B的隶属度分别为0.4、0,交运算取下确界0,故x_1\underset{\sim}A\cap \underset{\sim}B的隶属度为0。

例2

X=\{x_{1},x_{2},x_{3},x_{4},x_{5}\}\underset{\sim}A,\underset{\sim}B\in\mathcal{F}(X)

\underset{\sim}A={\frac{0.4}{x_{1}}}+{\frac{0.6}{x_{2}}}+{\frac{1}{x_{3}}}+{\frac{0.6}{x_{4}}}+{\frac{0.4}{x_{5}}},\ \underset{\sim}B={\frac{0.2}{x_{2}}}+{\frac{0.8}{x_{3}}}+{\frac{0.2}{x_{4}}}.

有:

(\underset{\sim}A\cap \underset{\sim}B)^{c}={\frac{1}{x_{1}}}+{\frac{0.8}{x_{2}}}+{\frac{0.2}{x_{3}}}+{\frac{0.8}{x_{4}}}+{\frac{1}{x_{5}}}

(\underset{\sim}A\cup \underset{\sim}B)^{c}=\frac{0.6}{x_{1}}+\frac{0.4}{x_{2}}+\frac{0.4}{x_{4}}+\frac{0.6}{x_{5}}

\underset{\sim}A^{c}\cap \underset{\sim}B^{c}={\frac{0.6}{x_{1}}}+{\frac{0.4}{x_{2}}}+{\frac{0.4}{x_{4}}}+{\frac{0.6}{x_{5}}}

\underset{\sim}A^{c}\cup \underset{\sim}B^{c}={\frac{1}{x_{1}}}+{\frac{0.8}{x_{2}}}+{\frac{0.2}{x_{3}}}+{\frac{0.8}{x_{4}}}+{\frac{1}{x_{5}}}

例1同理

例3

\underset{\sim}A\in\mathcal{F}(X),则(ACD)

A.\emptyset\subseteq \underset{\sim}A\subseteq X

B.\underset{\sim}A\cap \underset{\sim}A^{c}=\emptyset

C.( \underset{\sim}A^{c})^{c}= \underset{\sim}A

D.\underset{\sim}A\cap \underset{\sim}A= \underset{\sim}A

以隶属度0.5为例,补0.5,故\underset{\sim}A\cap \underset{\sim}A^{c}\neq \emptyset\underset{\sim}A\cup \underset{\sim}A^{c}\neq X

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值