《案例》—— OpenCV 实现2B铅笔填涂的答题卡答案识别

一、案例介绍

  • 下面是一张使用2B铅笔填涂选项后的答题卡
    在这里插入图片描述
  • 使用OpenCV 中的各种方法进行真确答案识别,最终将正确填涂的答案用绿色圈出,错误的答案不圈出,用红色圈出错误题目的正确答案
  • 最终统计正确的题目数量,并在答题卡的左上角写出分数
  • 最终的结果图如下:
    在这里插入图片描述

二、代码解析

  • 先直接上完整代码

    import numpy as np
    import cv2
    
    """ 定义显示图片的函数 """
    
    
    def cv_show(name, img):
        cv2.imshow(name, img)
        cv2.waitKey(0)
    
    
    """ 寻找透视变换时的四个近似轮廓的顶点 """
    
    
    def order_points(pts):
        # 一共4个坐标
        rect = np.zeros((4, 2), dtype="float32")
    
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
    
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
    
        return rect
    
    
    """ 图像透视变换函数 """
    
    
    def four_point_transform(image, pts):
        # 获取输入坐标点
        rect = order_points(pts)
        (tl, tr, br, bl) = rect
        # 计算输入的w和h值
        widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
        widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
        maxWidth = max(int(widthA), int(widthB))
        heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
        heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
        maxHeight = max(int(heightA), int(heightB))
    
        # 变换后对应坐标位置
        dst = np.array([[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32")
    
        M = cv2.getPerspectiveTransform
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值