第17讲:相关性热图绘制与美化——相关系数 + P 值标注的科学表达

目录

🧪 一、什么是“相关性热图”?

🔧 二、基础准备工作

📈 三、绘制基础相关性热图

✅ Step 1:计算相关性矩阵

🎯 四、添加显著性信息(P值)

✅ Step 2:计算相关系数与 P 值矩阵

💅 五、ggcorrplot 高级美化

🌐 六、可选主题样式美化

🔍 七、相关性热图科研应用场景

✍️ 八、Tips:如何写入论文

📦 附加工具推荐(进阶篇)

✨ 小结一览

🚀 下一讲预告


在科研数据分析中,变量间的相关性探索是最常见、最基础、也最关键的一步。
比如,你可能关心:

  • 🌱 土壤养分与作物生长之间有多强的相关性?

  • 💧 不同氮素形态与土壤水分、pH 是否显著相关?

  • 🧬 多组理化指标之间是否存在共线性?

此时,相关性热图就能快速帮你把几十个变量的相关关系“一图读懂”!


🧪 一、什么是“相关性热图”?

相关性热图(Correlation Heatmap)= 将变量两两之间的相关系数以颜色形式进行矩阵可视化。

  • 颜色深浅 → 表示相关系数(通常用 Pearson 或 Spearman)大小

  • 颜色正负 → 表示正相关 or 负相关

  • 显著性星号(P值) → 标注是否达到统计显著性


🔧 二、基础准备工作

我们以内置数据集 mtcars 为例,演示变量间相关性矩阵绘制。

# 加载必要的包
install.packages(c("ggplot2", "ggcorrplot", "psych", "Hmisc"))
library(ggcorrplot)
library(psych)
library(Hmisc)

📈 三、绘制基础相关性热图

✅ Step 1:计算相关性矩阵

data <- mtcars
cor_matrix <- cor(data, method = "pearson")
ggcorrplot(cor_matrix)

这就是最基础的相关性热图啦,颜色表示强度。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chh0715

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值