目录
在科研数据分析中,变量间的相关性探索是最常见、最基础、也最关键的一步。
比如,你可能关心:
-
🌱 土壤养分与作物生长之间有多强的相关性?
-
💧 不同氮素形态与土壤水分、pH 是否显著相关?
-
🧬 多组理化指标之间是否存在共线性?
此时,相关性热图就能快速帮你把几十个变量的相关关系“一图读懂”!
🧪 一、什么是“相关性热图”?
相关性热图(Correlation Heatmap)= 将变量两两之间的相关系数以颜色形式进行矩阵可视化。
-
颜色深浅 → 表示相关系数(通常用 Pearson 或 Spearman)大小
-
颜色正负 → 表示正相关 or 负相关
-
显著性星号(P值) → 标注是否达到统计显著性
🔧 二、基础准备工作
我们以内置数据集 mtcars
为例,演示变量间相关性矩阵绘制。
# 加载必要的包
install.packages(c("ggplot2", "ggcorrplot", "psych", "Hmisc"))
library(ggcorrplot)
library(psych)
library(Hmisc)
📈 三、绘制基础相关性热图
✅ Step 1:计算相关性矩阵
data <- mtcars
cor_matrix <- cor(data, method = "pearson")
ggcorrplot(cor_matrix)
这就是最基础的相关性热图啦,颜色表示强度。