第16讲:热图基础入门——用 pheatmap 与 ComplexHeatmap 解锁多维数据的可视表达!

目录

🔥 为什么我们需要热图?

🔧 一、你的第一张热图:用 pheatmap 快速起步

📦 安装与准备:

🧪 构建一个模拟数据框:

🎨 二、pheatmap 美化秘籍

✅ 1. 改变颜色风格

✅ 2. 添加注释(如样本信息)

✅ 3. 关闭聚类,手动排序

✅ 4. 细节调整建议

🧬 三、进入专业领域:ComplexHeatmap 的强大之处

📦 安装并加载:

🔬 构建复杂热图

🔁 四、当 pheatmap 不够用时,ComplexHeatmap 来救场!

🧠 五、热图的科研应用场景举例

💡 六、热图制作的几点建议

✨ 本讲小结

🚀 下一讲预告


🔥 为什么我们需要热图?

热图(Heatmap)是一种极具表达力的可视化工具,常用于表达:

  • 多个样本多个变量的变化趋势

  • 不同处理组在多个指标上的表现

  • 高维度数据的聚类与模式识别

基因表达矩阵土壤性质监测农学处理效果展示,热图无处不在。


🔧 一、你的第一张热图:用 pheatmap 快速起步

📦 安装与准备:

install.packages("pheatmap")
library(pheatmap)

🧪 构建一个模拟数据框:

mat <- matrix(rnorm(60, mean = 5, sd = 2), nrow = 6)
rownames(mat) <- paste("Sample", 1:6)
colnames(mat) <- paste("Gene", 1:10)

pheatmap(mat)

这就是你第一张热图啦!默认使用Z-score 归一化颜色映射,展示数据的相对水平。


🎨 二、pheatmap 美化秘籍

✅ 1. 改变颜色风格

pheatmap(mat, color = colorRampPalette(c("blue", "white", "red"))(100))

颜色渐变让趋势更加清晰。

✅ 2. 添加注释(如样本信息)

annotation_col <- data.frame(
  Treatment = factor(c("Contro
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chh0715

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值