How to Fine-Tune an LLM from Hugging Face? 笔记

How to Fine-Tune an LLM from Hugging Face? 笔记

使大模型适应特定领域的方法:fine-tuning微调、prompt engineering提示词工程、RAG检索增强生成。

大语言模型的微调

微调可以是全部微调,也可以是部分微调,由于大语言模型过于巨大,全部微调是不现实的,因此 Performance Efficient fine-tuning(PEFT) 是一种微调大语言模型的常用方法。

载入预训练的模型

Hugging Face 有很多有用的库和模块,例如 SFT, PEFT 和 AutoTokenizer。

在这里我们使用 Falcon-7b

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import LoraConfig

modelID = "tiiuae/falcon-7b"

LORA 是一种低资源微调大模型的方法。

准备数据集

SFT 可以直接使用 Hugging Face 中的数据集,当然也可以自己上传。

dataset = load_dataset("timdettmers/openassistant-guanaco", split="train")

根据需求来调整模型

除了可以使用部分微调的方法,我们还可以使用 quantization (神经网络量化)来减少参数量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值