全局对比损失(GC)& 局部对比损失(LC)

本文探讨了FLAVA模型中使用的局部对比损失(LocalContrastiveLoss)和全局对比损失(GlobalContrastiveLoss),强调了在GPU上进行本地计算和跨GPU完全反向传播对性能的影响。全局对比方法在FLAVA训练中显示出了性能优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源文章:FLAVA: A Foundational Language And Vision Alignment Model

https://arxiv.org/pdf/2112.04482.pdficon-default.png?t=N7T8https://arxiv.org/pdf/2112.04482.pdf

Local contrastive (GC) loss 局部对比损失

        计算对比损失的梯度和嵌入特征向量的操作都是在同一块GPU上完成的。这种方法被称为“本地对比”,因为所有的计算和反向传播都在本地GPU上进行,而不涉及其他GPU。这与“全局对比”方法形成对比,后者会在所有的GPU上进行反向传播。

Global contrastive (GC) loss 全局对比损失

        在这种情况下,一个批次中的样本会在各个GPU之间进行分割。但是这种方法在FLAVA的训练中与只在本地进行反向传播相比,跨GPU进行完全反向传播可以带来显著的性能提升

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值