机器学习之模型误差和偏差曲线

第一部分:对“准确”二字的理解

“准确”分为“准”和“确”两个部分:“准”代表射中靶心,输出正确;“确”代表射中的结果比较集中在一个区域,不分散,稳定。

在学术上,通常用“偏差Bias”来衡量“准”;

用“方差Variance”来衡量“确”;

用“噪声Noise”表示极限情况下的“误差值”。

①每一个样本都有自己的“偏差”,而“方差”是针对整个数据集的。

②上面的偏差用平方来表示是为了消除正负号的影响。

第二部分:对“误差”的衡量

如果偏差过大,会造成“欠拟合”

如果方差过大,会造成“过拟合”

如果噪声过大,“不收敛”

第三部分:误差出现的原因分析

第四部分:误差与训练的关系走向图

(1)误差与训练程度的走向

(2)误差和模型复杂程度的关系走向

第五部分:模型自身特点和平衡点的选择

(1)模型自身特点

(2)平衡点的选择

我们的目标是找到总体误差的最小值,也就是中间这条线。

第六部分:如何降低方差和偏差

(1)降低偏差

(2)降低方差

这里的“尽可能增加样本数”是因为随着样本数的增加,训练效果会越来越好,每次预测的准确度就很好,自然方差就会减小。

第六部分:经验风险(Empirical Risk)

经验风险(Empirical Risk)是在统计学习理论中用于衡量模型在训练集上的预测误差的概念。它指的是模型在给定训练数据集上产生的平均损失,是用来评估模型在已知数据上的表现。

其曲线走势就是第四部分的红线(偏差)的走势

第七部分:期望风险(Expected Risk)

期望风险(Expected Risk)是统计学习理论中的一个概念,用于衡量模型在所有可能的样本上产生的平均损失。它表示模型在数据的真实分布下的表现,是模型泛化能力的理想指标。

期望风险的图像走势就是第四部分的黑线(总体误差曲线)

第八部分:训练误差和泛化误差

训练误差:指的是模型在训练数据上的误差

泛化误差:指的是模型在新数据上的误差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值