前言
- 今后的一段时间,会慢慢更新yolo的使用,基础版本以yolov5为主,选
yolov5
主要是这个很经典,比较适合入门,后面会重点更新yolov10的使用与创新
一、一些概念的讲解
参数与超参数
- 参数:在程序中,可以说形式参数与实际参数,在神经网络中,可以理解为网络有关的设置,如权重和偏置;
- 超参数:这个主要是在模型训练中设置的一些参数,如模型迭代次数、学习率、优化器、梯度下降等等;
训练集、测试集、验证集
- 训练集:用于模型训练,从而来确定模型各种参数,如最好的权重和偏置,可以理解我们人学习知识;
- 验证集:用于在模型训练过程中检验模型效果,进而可以在模型训练过程中调整模型参数,可以理解我们月考;
- 测试集:这个是用于最终检测的,评价模型的泛化能力,可以理解为任何一次大考。
二、划分数据集
1、在yolov5中创建数据目录
在yolov5
文件夹下创建存储数据的目录datasets
(可以自己定义),在这个目录下创建Annotations
和images
这两个文件夹。
- Annotations:存放标注的标签文件
- images:存放需要打标签的图片文件
2、标注数据
使用labelimg
标注数据,详细过程参考:yolo基础—Labelimg工具安装与使用
- 原数据,存储在
images
中:
- 标注好数据,存储在
Annotations
目录中:
3、创建保存划分的文件夹
这里创建ImageStes
文件夹,用于保存划分后数据。
注意:需要在datasets
目录下。
4、数据集划分(代码实现)
第一步,创建split.py
文件
在yolov5
文件夹下,创建split.py
文件,用于存储划分数据的代码。
第二步,划分数据
这里划分比例:训练集:验证集:测试集 = 7 : 1 :2。
在split.py
下输入代码:
import os
import shutil
import random
random.seed(0)
def split_data(file_path,xml_path, new_file_path, train_rate, val_rate, test_rate):
# 计算文件有关的信息
each_class_image = []
each_class_label = []
for image in os.listdir(file_path):
each_class_image.append(image)
for label in os.listdir(xml_path):
each_class_label.append(label)
data=list(zip(each_class_image,each_class_label))
total = len(each_class_image)
# 随机打乱数据
random.shuffle(data)
each_class_image,each_class_label=zip(*data)
train_images = each_class_image[0:int(train_rate * total)]
val_images = each_class_image[int(train_rate * total):int((train_rate + val_rate) * total)]
test_images = each_class_image[int((train_rate + val_rate) * total):]
train_labels = each_class_label[0:int(train_rate * total)]
val_labels = each_class_label[int(train_rate * total):int((train_rate + val_rate) * total)]
test_labels = each_class_label[int((train_rate + val_rate) * total):]
# 分别存储在不同的文件夹下
for image in train_images:
print(image)
old_path = file_path + '/' + image
new_path1 = new_file_path + '/' + 'train' + '/' + 'images'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + image
shutil.copy(old_path, new_path)
for label in train_labels:
print(label)
old_path = xml_path + '/' + label
new_path1 = new_file_path + '/' + 'train' + '/' + 'labels'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + label
shutil.copy(old_path, new_path)
for image in val_images:
old_path = file_path + '/' + image
new_path1 = new_file_path + '/' + 'val' + '/' + 'images'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + image
shutil.copy(old_path, new_path)
for label in val_labels:
old_path = xml_path + '/' + label
new_path1 = new_file_path + '/' + 'val' + '/' + 'labels'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + label
shutil.copy(old_path, new_path)
for image in test_images:
old_path = file_path + '/' + image
new_path1 = new_file_path + '/' + 'test' + '/' + 'images'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + image
shutil.copy(old_path, new_path)
for label in test_labels:
old_path = xml_path + '/' + label
new_path1 = new_file_path + '/' + 'test' + '/' + 'labels'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + label
shutil.copy(old_path, new_path)
if __name__ == '__main__':
# 定义数据文件
file_path = "./datasets/images"
xml_path = "./datasets/Annotations"
new_file_path = "./datasets/ImageSets"
split_data(file_path,xml_path, new_file_path, train_rate=0.7, val_rate=0.1, test_rate=0.2)
解释:
- 数据划分的是思路是将所有数据随机打乱,然后按照不同的比例,选择不同数量的数据;
- 这个代码要注意的文件路径的问题
效果: