高数-第一类和第二类曲线积分

文章介绍了第一类曲线积分(对弧长的积分)和第二类曲线积分(对坐标的积分)的概念、定义、性质及计算方法。第一类曲线积分常用于计算质量分布不均匀的弧状物体的质量,而第二类曲线积分则涉及力在曲线上的作用和功的计算。两类积分之间的关系可以通过切线方向和力的方向来理解,当两者方向一致时,积分表示的意义相同。
摘要由CSDN通过智能技术生成

前言:本篇讲述第一类曲线积分和第二类曲线积分,以及它们的区别与联系。

目录:

第一类曲线积分——对弧长的曲线积分

1、概念引入

2、定义

3、性质

4、计算

第二类曲线积分——对坐标的曲线积分

1、概念引入

2、定义

3、性质

4、计算

两类曲线积分之间的联系


第一类曲线积分——对弧长的曲线积分

1、概念引入

举一个实际生活中的例子:

我们知道有些物体的质量是均匀分布的,比如高中经常用到的“质量均匀分布的小球”这样的理想化模型,但在现实生活中,大部分物体的质量不是均匀分布的。质量不均匀在于密度不均匀,如果物体的密度按照一定的规律变化,就可以将密度的分布情况用函数表示,这样就有了线密度、面密度、体密度等。

对一个弧状的物体(理想化地将其看作一条二维平面上的弧线)而言,算其质量要考虑其线密度。

首先,将一段线密度为f(x,y)的弧分割成n小段。然后用微元的思想,每一小段的密度都是均匀的,所以第i段的质量就为

 

然后近似求和:,最后取极限:取λ为Δsi的最小值,当λ→0,也即每一段弧都趋近于0时,

2、定义

其中,f(x,y)为被积函数,L为积分弧段。即f在一段平面弧上的积分,ds为弧长元素

类似地,平面弧可以推广到空间弧,设函数为f(x,y,z),曲线弧为Γ,那么函数在空间曲线弧上的积分为

3、性质

满足线性性,可加性,被积函数为1时几何意义为弧长,保号性,保序性,估值性,中值定理这7个性质,具体的证明就不再多说了。

4、计算

不按课本上复杂的证明来理解,这里给出一种较为简单直观的方法。

重点在弧长元素ds,当ds→0时,由微分的思想化曲为直,即一段很小的弧就是一小段直线。为了便于计算,通常将弧向x轴和y轴作垂线,即构成了一个小直角三角形,如图:

 

将难以表示的Δs转换成立易于表示的Δx和Δy,即若x = φ(t),y = ψ(t),那么Δx = dx = φ'(t)dt,Δy = dy = ψ'(t)dt,所以

所以弧长的曲线积分常转化为参数形式来计算,即当参数t由α变为β时

,这里要求α<β,因为弧长一定是正数,负数的话就没有意义了。

如果弧长L = ψ(x),这个是一般方程,一般方程可以看作特殊的参数方程:x = t ; y = ψ(t),其和参数方程的算法是一样的,只不过x取代了t而已,很容易就能看出

第二类曲线积分——对坐标的曲线积分

1、概念引入

一个质点在一条弧上受到力的作用而移动,力F与质点的位置有关,F(x,y) = P(x,y)i + Q(x,y)jF沿着弧的积分即为W。同样,我们将这一段弧分割,由于F是矢量,它做功需要考虑质点移动的方向,所以弧实际上也是一个弯曲的向量,我们将它分割成n个小向量段,这时化曲为直了。由于F的表达式是由x轴,y轴的两个单位向量构成的,那么我们可以将小向量段也分解成x轴y轴单位向量矢量和的形式,这样便于计算,即,那么我们就可以将F在向量弧上的积分转化为F在x轴上的分量于向量段在x轴分量上的积分,与F在y轴上的分量于向量段在y轴分量上的积分之和,即 ,接着,我们再近似求和和取极限,令λ等于小向量段的最大长度,得

2、定义

(这个式子分开写成为独立的式子也是可以的,只不过平时做题会经常遇到合起来的式子,所以就这样写了),P,Q为被积函数,L是积分弧段。该式子写成向量形式会更容易理解,,这里的dr = dx+ dyj,简单来说,就是将一个向量积分分解成x轴和y轴上的分向量的积分之和

3、性质

具有线性性,可加性,矢量性。第三个矢量性是坐标曲线积分所特有的。设L为有向光滑曲线弧,则。由于对坐标的曲线积分被积函数是向量,所以要关注积分的方向。

4、计算

计算方法和对弧长的曲线积分非常类似,也是有一般方程和参数方程两种情况,当然,一般方程也是特殊的参数方程。(为什么要使用参数方程呢?因为参数方程是以坐标形式呈现的,弧长分解到坐标,好算)

若x = φ(t) ; y = ψ(t),那么dx = φ'(t)dt,dy = ψ'(t)dt,所以当参数t由α变为β时,

 ,这里的α不一定小于β。第一类曲线积分的α小于β是因为弧长一定是大于0的,如果小于0就没有意义;而第二类曲线积分要看方向,向量可正可负,这里的正负表示方向,不表示大小。

类似的,二维向量弧可以拓展到三维向量弧,即

 如果是一般方程,可以直接按定积分来计算。定积分是第二类曲线积分的特例,因为当积分路径为一条直线时,这条直线要么沿x轴(积分元素为dx),要么沿y轴(积分元素为dy),曲线积分就变成了定积分。

两类曲线积分之间的联系

除了课本上给出的数学证明之外,我们也可以通过作图来理解。我们先来画一段弧,弧上取一点M,在M处作出弧在这一点的切线,朝上的方向是其切向量的方向,如图:

从图中我们可以看出,dx = ds cosα,dy = ds cosβ。设点M的坐标为(x0, y0),则当F(x0, y0)的方向正好与M点出的切向量方向一致时,第一类曲线积分和第二类曲线积分都表示的是M附近这一小段弧微分。如果F(x, y) 的方向正好与弧上每点的切向量方向一致时,第一类曲线积分和第二类曲线积分表示的就是同一条曲线。(F(x, y)的方向表示的是弧在某点的变化趋势,是对于第二类曲线积分而言的;而切向量表示的也是弧的变化趋势,考虑的是第一类曲线积分。所以,当两者方向相同时,曲线每时每刻的变化趋势相同,那么曲线自然也相同了

用公式来表示就是,同样,推广到空间弧线,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 13
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值