1.两类曲线积分(积分就是一个算术式子,就是加法到乘法,无限个加法相加就是积分了,用一种符合表示,这个符号就是类似加减乘除的运算符号)
1.1第一类曲线积分的定义
对曲线的进行积分(简单来说就是我们从对坐标轴x的直线积分研究到对曲线的积分)
1.2第一类曲线积分的计算方法
1.2.1利用性质进行化简
①两类对称性质 (被积函数表达式关于坐标轴的关系,用于辅助下面的方法,积分只是长度乘函数值然后相加,这里就是弧长,但本质来说还是弧的长度,也就是说只需考虑被积函数的表达式子正负即可,长度永远为正)
②曲线可以分段(是因为在同一变量范围上,函数表达式不同)
1.2.2直接带值法(所给曲线与被积函数的关系)
①被积函数表达式化为所给曲线方程形式
1.2.3化为一重积分(y可以用x表示,曲线可以用x和y表示)
①把ds化为dx
②把被积函数表达式化为只有x表达式
1.2.4用参数进行转化(x和y的数值可用一个参数表达,且ds可以用参数表示,也可以理解为把xy用参数和t表示的结果,一般用于圆,实际上就是换个地方更适合,就像溜冰鞋平地快但不如正常鞋子爬楼梯)
①ds化为dt表达式
②坐标用参数坐标代替
1.3第二类曲线积分的定义
对坐标的曲线积分(定义公式坐标分开计算,所以叫这个,就是对一类曲线积分加上方向,方向在于我们可以从大到小进行积分和另一种算曲线积分的定义,然后分别在坐标上投影,在数值上只要第一类和第二类的方向相同,第一类乘于方向余弦)
1.4第二类曲线积分的计算方法
1.4.1利用性质进行化简
①弧长划分为几个部分(就是对长度乘函数的积分)
1.4.1化为一重积分(y可由x表示在数值上,只要数值一样即可)
①把y的坐标变为x
1.4.2参数方程
①dx和dy转化为dt和参数的表达式
②x和y都用t和参数表示
1.4.3格林公式(曲线与他所围成的面积的积分之间的关系)
①判断是否为封闭曲线 不是封闭进行构造 再判断方向是否为正方向
②利用公式转化为曲面积分