时间序列分析(六)——自回归移动平均模型(ARMA模型)

此前篇章:

时间序列分析(一)——基础概念篇

时间序列分析(二)——平稳性检验

时间序列分析(三)——白噪声检验

时间序列分析(四)——差分运算、延迟算子、AR(p)模型

时间序列分析(五)——移动平均模型(MA模型)


一、ARMA模型的定义

ARMA(p, q)模型是一种线性时间序列模型,它结合了自回归模型(AR模型)和移动平均模型(MA模型)的特性,能够同时利用历史观测值和历史噪声项来建模序列的动态特性。ARMA模型适用于具有复杂依赖结构的时间序列数据,能够更灵活地捕捉数据的自相关性和移动平均性,也是最常用的模型之一。

ARMA(p, q)模型的一般形式:

参数含义:

  • μ:序列的均值(通常假设为0,即序列已中心化)。

  • φ:自回归系数,反映历史观测值对当前值的影响。

  • θ:移动平均系数,反映历史噪声项对当前值的影响。

  • ϵ:独立同分布的白噪声。

  • p:自回归部分的阶数,表示依赖的历史观测值步长。

  • q:移动平均部分的阶数,表示依赖的历史噪声项步长。

ARMA(p, q)模型的延迟算子形式:

利用延迟算子 LL(定义:L^{k}X_{t}=X_{t-k } 和 L^{k}\epsilon _{t}=\epsilon _{t-k}),ARMA模型可简化为:

其中:

  • \Phi (L)=1-\phi _{1}L-\phi_{2}L^{2}-...-\phi_{p}L^{p} 为自回归多项式

  • \Theta (L)=1+\theta _{1}L+\theta _{2}L^{2}+...+\theta _{q}L^{q} 为移动平均多项式

二、平稳性与可逆性条件

平稳性条件:ARMA模型的平稳性由自回归多项式 Φ(z) 的根决定,所有根 z 满足 ∣z∣>1(位于复平面单位圆外),若根在单位圆内,则序列非平稳,需通过差分转换为平稳序列。

可逆性条件:ARMA模型的可逆性由移动平均多项式 Θ(z) 的根决定,所有根 z 满足 ∣z∣>1(位于复平面单位圆外)所有根 z 满足 ∣z∣>1(位于复平面单位圆外),若根在单位圆内,模型不可逆,无法唯一确定噪声项的权重。

:ARMA模型需同时满足平稳性和可逆性条件,才能保证其统计性质和预测能力。

三、ARMA模型的统计特性

(1) 均值:常数均值。若序列中心化,则均值为0,否则均值可以通过以下计算式得到:

对模型等式两端同时取取均值,可以得到,

(2) 方差:需分母不为零且平稳性条件成立。

(3) 自相关函数(ACF)与偏自相关函数(PACF)

  • ACF:拖尾衰减(受AR和MA项共同影响),无明确截尾点。

  • PACF:拖尾衰减(受AR和MA项共同影响),无明确截尾点。

  • 特点:ARMA模型的ACF和PACF均表现为拖尾,需结合模型阶数(p, q)进行识别。

四、ARMA模型、AR模型、MA模型的对比

特性AR(p)模型MA(q)模型ARMA(p, q)模型
模型依赖项历史观测值历史噪声项历史观测值和历史噪声项
ACF拖尾(逐渐衰减至零)截尾(在滞后q阶后突变为零)拖尾(逐渐衰减至零)
PACF截尾(在滞后p阶后突变为零)拖尾(逐渐衰减至零)拖尾(逐渐衰减至零)
平稳性条件特征根在单位圆内无平稳性条件(MA模型天然平稳)自回归多项式的根在单位圆内
可逆性条件移动平均多项式的根在单位圆外自回归多项式和移动平均多项式的根在单位圆外

建模和参数估计等内容在后续文章再统一讲解,简单了解一下模型特性先叭。

# 文章如有错误,欢迎大家指正。我们下册再见叭

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值