机器学习——决策树(Decision Tree)

一、引言

决策树是机器学习领域中一种直观且强大的分类和回归方法。本文将详细介绍决策树的理论基础,包括最优属性选择的三种方法,并通过Python代码实现决策树的构建、模型评估和可视化。

二、决策树理论

决策树是一种非常直观且常用的机器学习算法,它采用树形结构来进行决策分析。在决策树中,每个内部节点表示一个属性上的判断条件,每个分支代表某个判断条件的输出,每个叶子节点代表一种分类结果。决策树的主要优点是易于理解和实现,同时能够有效地处理数值型和分类型数据。
构建决策树的过程主要包括特征选择决策树生成决策树剪枝三个步骤。其中,特征选择是关键的一步,它决定了使用哪个属性来划分数据集。常用的特征选择方法包括信息增益增益率基尼指数等,这些方法都是基于数据集的不确定性或纯度来衡量的。下面来介绍以下决策树最优属性的三种选择方法。

最优属性选择方法

2.1 信息增益

信息增益(Information Gain)用于度量属性选择前后数据集不确定性的减少程度。我们首先定义数据集D的信息熵   H ( D ) \ H(D)  H(D),它表示数据集   D \ D  D中样本类别的不确定性。

信息熵的计算公式为:

  H ( D ) = − ∑ i P ( x i ) ⋅ log ⁡ 2 P ( x i ) \ H(D) = - \sum_{i} P(x_i) \cdot \log_2 P(x_i)  H(D)=iP(xi)log2P(xi)

其中   P ( x i ) \ P(x_i)  P(xi)表示数据集   D \ D  D中第i个类别所占的比例。

然后,我们计算使用属性   A \ A  A对数据集   D \ D  D进行划分后的信息熵   H ( D ∣ A ) \ H(D|A)  H(DA),即根据属性   A \ A  A的不同取值将   D \ D  D划分为若干个子集,然后计算每个子集的加权信息熵。

信息增益公式为:

  I G ( D , A ) = H ( D ) − H ( D ∣ A ) \ IG(D, A) = H(D) - H(D|A)  IG(D,A)=H(D)H(DA)

信息增益越大,说明使用属性   A \ A  A进行划分所获得的“纯度提升”越大。

2.2 增益率

增益率(Gain Ratio)是信息增益的改进版,用于解决信息增益对取值较多的属性的偏好问题。

增益率的计算公式为:

  G a i n _ R a t i o ( D , A ) = I G ( D , A ) I V ( A ) \ Gain\_Ratio(D, A) = \frac{IG(D, A)}{{IV}(A)}  Gain_Ratio(D,A)=IV(A)IG(D,A)

其中   I V ( A ) \ IV(A)  IV(A)是属性   A \ A  A的固有值(Intrinsic Value),用于衡量属性A的取值数量对信息增益的影响。

  I V ( A ) \ IV(A)  IV(A)的计算公式为:

  I V ( A ) = − ∑ v ∈ A ( ∣ D v ∣ ∣ D ∣ ) log ⁡ 2 ( ∣ D v ∣ ∣ D ∣ ) \ IV(A) = - \sum_{v \in A} \left( \frac{|D_v|}{|D|} \right) \log_2\left( \frac{|D_v|}{|D|} \right)  IV(A)=vA(DDv)log2(DDv)

其中   ∣ D v ∣ \ |D_v|  Dv是属性   A \ A  A取值为   v \ v  v的样本数,   ∣ D ∣ \ |D|  D是样本总数。

增益率越大,说明使用属性A进行划分的效果越好。

2.3 基尼指数

基尼指数(Gini Index)用于度量数据集的不纯度。基尼指数越小,说明数据集的纯度越高。

对于属性   A \ A  A,其基尼指数的计算公式为:

  G i n i _ i n d e x ( D , A ) = ∑ v ∈ values ( A ) ∣ D v ∣ ∣ D ∣ ⋅ Gini ( D v ) \ Gini\_index(D, A) = \sum_{v \in \text{values}(A)} \frac{|D_v|}{|D|} \cdot \text{Gini}(D_v)  Gini_index(D,A)=vvalues(A)DDvGini(Dv)

其中   G i n i ( D v ) \ Gini(D_v)  Gini(Dv)是子集   D v \ D_v  Dv的基尼不纯度,计算公式为:

  G i n i ( D v ) = 1 − ∑ i P ( x i ) 2 \ Gini(D_v) = 1 - \sum_{i} P(x_i)^2  Gini(Dv)=1iP(xi)2

其中   P ( x i ) \ P(x_i)  P(xi)是子集   D v \ D_v  Dv中第   i \ i  i个类别所占的比例。

在选择最优属性时,我们计算每个属性的基尼指数,并选择基尼指数最小的属性作为最优划分属性。

三、决策树的优缺点及应用场景

3.1 优点

直观易懂:决策树模型的结构清晰,易于理解和解释。人们可以很容易地通过查看树的结构来理解模型是如何根据特征值进行决策的。

分类速度快:一旦决策树被训练好,对新样本进行分类的速度非常快。只需要按照树的决策路径向下遍历,即可得到分类结果。

能够处理非线性关系:决策树可以自动发现特征之间的非线性关系,并基于这些关系进行分类。

无需数据预处理:决策树不需要对数据进行复杂的预处理,如特征缩放或去除缺失值等。

能够处理多分类问题:决策树不仅可以处理二分类问题,还可以处理多分类问题。

3.2 缺点

容易过拟合:如果决策树过于复杂,它可能会过于关注训练数据中的噪声和细节,导致在测试数据或新数据上的性能下降。这通常表现为决策树的深度过大或叶子节点过多。

对连续特征处理不佳:决策树对于连续特征的处理需要进行离散化,这可能会导致信息的损失,影响分类的准确性。

对缺失值敏感:决策树在处理包含缺失值的特征时可能会遇到困难,因为每个节点都需要基于完整的特征集进行决策。

不太稳定:不同的数据集或者不同的模型训练参数可能导致生成的决策树结构差异很大,这可能会影响模型的稳定性和可重复性。

为了克服这些缺点,实际应用中通常会采用一些策略,如剪枝(pruning)来简化决策树,防止过拟合;或者使用集成学习方法(如随机森林)来结合多个决策树的预测结果,提高模型的稳定性和准确性。

3.3 应用场景

电商推荐系统:电商平台可以利用决策树算法,根据用户的历史购买记录、浏览行为、个人偏好等信息,构建决策树模型,实现个性化的商品推荐,从而提高用户购买转化率。

医学诊断:医生可以使用决策树算法来辅助诊断疾病。根据患者的症状、生理指标、病史等特征,构建决策树模型,帮助医生判断患者是否患有某种疾病,从而指导治疗方案。

电影评分预测:在线视频平台可以利用决策树算法,根据用户的观看历史、评分记录、影片类型等信息,构建决策树模型,预测用户对未观看的电影的评分,从而为用户推荐感兴趣的电影。

股票市场预测:投资者可以使用决策树算法来预测股票市场的涨跌。根据股票的历史交易数据、市场指标、财务数据等特征,构建决策树模型,预测股票的涨跌趋势,指导投资决策。

人脸识别:人脸识别系统可以利用决策树算法,根据人脸图像的特征,构建决策树模型,识别出不同的人脸。

风险评估:在金融领域,决策树也被用于风险评估,如信用评分、欺诈检测等。通过构建决策树模型,金融机构可以更准确地评估客户的信用风险,预防潜在的欺诈行为。

游戏AI:在游戏开发中,决策树可以用来模拟游戏角色的行为和决策过程,增加游戏的智能性和互动性。

四、实战部分

接下来我将运用鸢尾花数据集作为实战例子来构建决策树,并分别用信息增益和基尼不纯度来作为选择最优属性的方法,进行对比分析。

4.1 导入库和数据集

首先,导入所需的Python库和鸢尾花数据集

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

4.2 数据预处理

我将数据集划分为训练集和测试集,以便评估模型的性能。

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

4.3 构建决策树模型

接下来,我使用两种不同的划分准则(信息增益和基尼不纯度)来构建决策树模型。

# 使用信息增益(默认方法)构建决策树
clf_entropy = DecisionTreeClassifier(criterion='entropy', random_state=42)
clf_entropy.fit(X_train, y_train)
y_pred_entropy = clf_entropy.predict(X_test)

# 使用基尼不纯度构建决策树
clf_gini = DecisionTreeClassifier(criterion='gini', random_state=42)
clf_gini.fit(X_train, y_train)
y_pred_gini = clf_gini.predict(X_test)

4.4 评估模型性能

我使用准确率、混淆矩阵、精确率、召回率和 F1 分数来进行模型评估,并将混淆矩阵可视化。由于鸢尾花数据集是一个三分类问题,所以如果要绘制ROC、PR曲线需要将其转变为二分类问题,或者两两类别之间进行对比,比较复杂,所以我没有进行这一步。

# 准确率、混淆矩阵、精确率、召回率和 F1 分数
accuracy_entropy = accuracy_score(y_test, y_pred_entropy)
cm_entropy = confusion_matrix(y_test, y_pred_entropy)
precision_entropy = precision_score(y_test, y_pred_entropy, average='weighted')
recall_entropy = recall_score(y_test, y_pred_entropy, average='weighted')
f1_entropy = f1_score(y_test, y_pred_entropy, average='weighted')

accuracy_gini = accuracy_score(y_test, y_pred_gini)
cm_gini = confusion_matrix(y_test, y_pred_gini)
precision_gini = precision_score(y_test, y_pred_gini, average='weighted')
recall_gini = recall_score(y_test, y_pred_gini, average='weighted')
f1_gini = f1_score(y_test, y_pred_gini, average='weighted')

# 输出评估指标
print(f"Entropy Criterion Accuracy: {accuracy_entropy}")
print(f"Entropy Criterion Confusion Matrix:\n{cm_entropy}")
print(f"Entropy Criterion Precision: {precision_entropy}")
print(f"Entropy Criterion Recall: {recall_entropy}")
print(f"Entropy Criterion F1 Score: {f1_entropy}")

print(f"Gini Criterion Accuracy: {accuracy_gini}")
print(f"Gini Criterion Confusion Matrix:\n{cm_gini}")
print(f"Gini Criterion Precision: {precision_gini}")
print(f"Gini Criterion Recall: {recall_gini}")
print(f"Gini Criterion F1 Score: {f1_gini}")

# 对于多分类问题,我们可能需要计算每个类别的ROC-AUC,或者将问题视为one-vs-rest问题进行计算
# 但由于鸢尾花数据集是一个三分类问题,我们在这里不展示ROC-AUC曲线的绘制。
# 如果需要绘制ROC-AUC曲线,可能需要为每个类别分别计算。

# 可视化混淆矩阵(entropy)
plt.figure(figsize=(10, 7))
ConfusionMatrixDisplay.from_estimator(clf_entropy, X_test, y_test, cmap='Blues', display_labels=iris.target_names)
plt.title('Entropy Criterion Confusion Matrix')
plt.show()

# 可视化混淆矩阵(gini)
plt.figure(figsize=(10, 7))
ConfusionMatrixDisplay.from_estimator(clf_gini, X_test, y_test, cmap='Blues', display_labels=iris.target_names)
plt.title('Entropy Criterion Confusion Matrix')
plt.show()

4.5 可视化决策树

在评估完模型之后,就可以将两个决策树可视化出来。

# 可视化信息增益决策树
plt.figure(figsize = (10,7))
plot_tree(clf_entropy, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.show()

# 可视化基尼指数决策树
plt.figure(figsize = (10,7))
plot_tree(clf_gini, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.show()

五、结果及分析

5.1 评估模型结果及分析

准确率、混淆矩阵、精确率、召回率和F1分数
信息增益决策树混淆矩阵
基尼指数决策树混淆矩阵
首先,从精度(Accuracy)方面来看,信息增益准则的精度为0.9777777777777777,而基尼准则的精度达到了1.0。基尼准则在这里表现得更好,意味着它在分类任务上的准确率更高。
其次,从混淆矩阵上看可以看出,信息增益准则和基尼准则的表现都很好,不同类别之间的混淆度都很低或者就是0。
再来看其他指标,熵准则的召回率(Recall)与精度相同,为0.9777777777777777,而基尼准则的召回率达到了1.0。这表明基尼准则在识别正例方面的能力更强。
最后,F1分数(F1 Score)综合考虑了精度和召回率,给出了一个综合评价指标。熵准则的F1分数为0.9777448559670783,而基尼准则的F1分数同样为1.0。这进一步证实了基尼准则在综合性能上的优势。

5.2 决策树可视化结果及分析

信息增益决策树
基尼指数决策树
从两个准则得出的决策树可以看出,运用不同的最优属性选择准则,决策树的样子往往也不同,不同的阈值选择都对决策树的样子有影响。

六、总结

本文详细介绍了决策树的理论基础,包括最优属性选择的三种方法,并通过Python代码展示了如何使用scikit-learn库创建决策树、评估模型性能并进行可视化。在实际应用中,我们可以根据数据的特点和需求选择合适的最优属性选择方法。这次实验也让我对决策树有了更深的理解和看法,重点就是掌握决策树的决策理论以及最优属性的选择方法,实验过程中我也遇到了很多困难,比如对Python不熟悉对scikit-learn库中的函数不熟悉。最后,希望在之后的机器学习之旅我能更上一层楼,期待下一次机器学习算法实验。

  • 9
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值