CINTA第七次作业

第十一章课后习题QR

第四题

证明: 证明: 证明:
设 p 是奇素数, a , b ∈ Z 且不被 p 整除。则有: 设p是奇素数,a,b\in Z且不被p整除。则有: p是奇素数,a,bZ且不被p整除。则有:
1. 如果 a ≡ b ( m o d   p ) , 则 ( a p ) = ( b p ) 1.如果a\equiv b(mod\ p),则(\frac{a}{p})=(\frac{b}{p}) 1.如果ab(mod p),(pa)=(pb)
2. ( a p ) ( b p ) = ( a b p ) 2.(\frac{a}{p})(\frac{b}{p})=(\frac{ab}{p}) 2.(pa)(pb)=(pab)
3. ( a 2 p ) = 1 3.(\frac{a^{2}}{p})=1 3.(pa2)=1

证明如下: 证明如下: 证明如下:

对于 1 , 对于1, 对于1
若 a 是模 p 的 Q R ,那么 b 也是模 p 的 Q R ,有 ( a p ) = ( b p ) = 1 若a是模p的QR,那么b也是模p的QR,有(\frac{a}{p})=(\frac{b}{p})=1 a是模pQR,那么b也是模pQR,有(pa)=(pb)=1
若 a 是模 p 的 Q N R ,那么 b 也是模 p 的 Q N R ,有 ( a p ) = ( b p ) = − 1 若a是模p的QNR,那么b也是模p的QNR,有(\frac{a}{p})=(\frac{b}{p})=-1 a是模pQNR,那么b也是模pQNR,有(pa)=(pb)=1
即 ( a p ) = ( b p ) 即(\frac{a}{p})=(\frac{b}{p}) (pa)=(pb)

对于 2 , 对于2, 对于2
根据命题 11.3 ,有 Q R × Q R = Q R , ( 1 × 1 = 1 ) = 1 根据命题11.3,有QR\times QR=QR,(1\times 1=1)=1 根据命题11.3,有QR×QR=QR,(1×1=1)=1
Q R × Q N R = Q N R , ( 1 × − 1 = − 1 ) = − 1 QR\times QNR=QNR,(1\times -1=-1)=-1 QR×QNR=QNR,(1×1=1)=1
Q N R × Q N R = Q R , ( − 1 × − 1 = 1 ) = 1 QNR\times QNR=QR,(-1\times -1=1)=1 QNR×QNR=QR,(1×1=1)=1
即 ( a p ) ( b p ) = ( a b p ) 即(\frac{a}{p})(\frac{b}{p})=(\frac{ab}{p}) (pa)(pb)=(pab)

对于 3 , 对于3, 对于3
即对应 2 中, a 是模 p 的 Q R ,或 a 是模 p 的 Q N R ,有 Q R × Q R = Q R , 或 Q N R × Q N R = Q R 即对应2中,a是模p的QR,或a是模p的QNR,有QR\times QR=QR,或QNR\times QNR=QR 即对应2中,a是模pQR,或a是模pQNR,有QR×QR=QR,QNR×QNR=QR
即证得, ( a 2 p ) = 1 即证得,(\frac{a^{2}}{p})=1 即证得,(pa2)=1


第五题

给出推论 11.1 的完整证明 给出推论11.1的完整证明 给出推论11.1的完整证明
设 p 是一个奇素数,则: 设p是一个奇素数,则: p是一个奇素数,则:
( − 1 p ) = { 1 如果 p ≡ 1 ( m o d   4 ) − 1 如果 p ≡ − 1 ( m o d   4 ) (\frac{-1}{p})= \left\{ \begin{array}{lc} 1 & 如果p\equiv1(mod\ 4) \\ -1&如果p\equiv-1(mod\ 4)\\ \end{array} \right. (p1)={11如果p1(mod 4)如果p1(mod 4)

证明如下: 证明如下: 证明如下:

若 p ≡ 1 ( m o d   4 ) ,则存在 k ∈ Z 使得, p = 4 k + 1 若p\equiv1(mod\ 4),则存在k\in Z使得,p=4k+1 p1(mod 4),则存在kZ使得,p=4k+1
根据欧拉准则,有 ( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 ≡ ( − 1 ) ( 4 k + 1 − 1 ) / 2 ≡ 1 ( m o d   p ) 根据欧拉准则,有(\frac{-1}{p})\equiv(-1)^{(p-1)/2}\equiv(-1)^{(4k+1-1)/2}\equiv1(mod\ p) 根据欧拉准则,有(p1)(1)(p1)/2(1)(4k+11)/21(mod p)

若 p ≡ − 1 ( m o d   4 ) ,则存在 k ∈ Z 使得, p = 4 k − 1 若p\equiv-1(mod\ 4),则存在k\in Z使得,p=4k-1 p1(mod 4),则存在kZ使得,p=4k1
根据欧拉准则,有 ( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 ≡ ( − 1 ) ( 4 k − 1 − 1 ) / 2 ≡ − 1 ( m o d   p ) 根据欧拉准则,有(\frac{-1}{p})\equiv(-1)^{(p-1)/2}\equiv(-1)^{(4k-1-1)/2}\equiv-1(mod\ p) 根据欧拉准则,有(p1)(1)(p1)/2(1)(4k11)/21(mod p)

证毕 证毕 证毕


第六题

设 p 是奇素数,请证明 Z p ∗ 的所有生成元都是模 p 的二次非剩余 设p是奇素数,请证明Z_{p}^{*}的所有生成元都是模p的二次非剩余 p是奇素数,请证明Zp的所有生成元都是模p的二次非剩余

证明如下: 证明如下: 证明如下:

假设 g 是 Z p ∗ 的一个生成元,且 g 是模 p 的二次剩余 假设g是Z_{p}^{*}的一个生成元,且g是模p的二次剩余 假设gZp的一个生成元,且g是模p的二次剩余
根据欧拉准则,则存在 1 < k < p − 1 ,使得 g k ≡ 1 ( m o d   p ) 根据欧拉准则,则存在1<k<p-1,使得g^{k}\equiv 1(mod\ p) 根据欧拉准则,则存在1<k<p1,使得gk1(mod p)
而, g 的阶为 p − 1 ,存在矛盾 而,g的阶为p-1,存在矛盾 而,g的阶为p1,存在矛盾
故, Z p ∗ 的所有生成元都是模 p 的二次非剩余 故,Z_{p}^{*}的所有生成元都是模p的二次非剩余 故,Zp的所有生成元都是模p的二次非剩余


  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Day-Bleeds

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值