【DeepSeek】DeepSeek概述 | 本地部署deepseek

目录

1 -> 概述

1.1 -> 技术特点

1.2 -> 模型发布

1.3 -> 应用领域

1.4 -> 优势与影响

2 -> 本地部署

2.1 -> 安装ollama

2.2 -> 部署deepseek-r1模型


1 -> 概述

DeepSeek是由中国的深度求索公司开发的一系列人工智能模型,以其高效的性能和低成本的训练而受到关注。以下是其主要介绍:

1.1 -> 技术特点

  • 混合专家架构(MoE):DeepSeek-V3采用MoE架构,总参数达6710亿,但每个输入只激活370亿参数,通过动态冗余策略,在推理和训练过程中保持最佳的负载平衡,大大降低了计算成本,同时保持高性能。
  • 多头潜在注意力(MLA):引入多头潜在注意力机制,通过低秩联合压缩机制,将Key-Value矩阵压缩为低维潜在向量,显著减少内存占用。
  • 无辅助损失负载均衡:采用无辅助损失负载均衡策略,最小化因鼓励负载均衡而导致的性能下降。
  • 多Token预测(MTP):采用多Token预测目标,证明其对模型性能有益,并可用于推理加速。
  • FP8混合精度训练:设计了FP8混合精度训练框架,首次验证了在极大规模模型上进行FP8训练的可行性和有效性。
  • 知识蒸馏:DeepSeek-R1通过知识蒸馏,将长链推理(CoT)模型的推理能力蒸馏到标准LLM中,显著提升了推理性能。

1.2 -> 模型发布

  • DeepSeek-V3:2024年12月发布,总参数达6710亿,采用创新的MoE架构和FP8混合精度训练,训练成本仅为557.6万美元,在聊天机器人竞技场(Chatbot Arena)上排名第七,在开源模型中排名第一,是全球前十中性价比最高的模型。
  • DeepSeek-R1:2025年1月发布,性能与OpenAI的o1正式版持平,并开源,在Chatbot Arena综合榜单上排名第三,与OpenAI的o1并列,在高难度任务上表现出色。
  • Janus-Pro:2025年1月28日发布,分为7B(70亿)和1.5B(15亿)两个参数量版本,且均为开源,在多模态理解和文本到图像的指令跟踪功能方面取得重大进步,同时增强了文本到图像生成的稳定性,在多项基准测试中表现出色,甚至强于OpenAI旗下的DALL-E 3,以及Stable Diffusion。

1.3 -> 应用领域

  • 自然语言处理:能够理解并回答用户的问题,进行文本生成、翻译、摘要等任务,可用于智能客服、内容创作、信息检索等领域。
  • 代码生成与调试:支持多种编程语言的代码生成、调试和数据分析任务,帮助程序员提高工作效率。
  • 多模态任务:如Janus-Pro模型可进行文生图、图生文等多模态任务,在图像生成、图像理解等方面有应用潜力。

1.4 -> 优势与影响

  • 成本效益高:通过算法优化和架构创新,在保证性能的前提下,大幅降低了训练和推理成本,使AI技术更易于普及和应用。
  • 开源策略:采用完全开源策略,吸引了大量开发者和研究人员的关注,促进了AI社区的协作和技术的快速发展。
  • 推动行业变革:DeepSeek的成功挑战了传统的“大力出奇迹”的AI发展模式,为行业提供了新的发展思路和方向,激发了更多的创新和探索。

2 -> 本地部署deepseek

2.1 -> 安装ollama

ollama官网

  • 点击Download下载 

  • 选择对应的操作系统,本次以Windows操作系统为例

点击Download for Windows下载。 

  • 下载完成后,打开文件开始安装OllamaSetup

  • 点击Install开始下载,等待下载完成

  • 检查是否安装成功

win+R输入cmd调出命令行进入到命令模式,输入命令ollama -v查看是否安装成功,输入完命令出现了版本号的话就说明安装成功。

2.2 -> 部署deepseek-r1模型

  • 回到ollama官网点击左上角的Models进入如下界面。并选择第一个deepseek-r1,点击进入

  • 选择适合自己电脑配置的版本

  • 选择好后,复制对应版本后的命令

  • win+R输入cmd调出命令行进入到命令模式,输入命令

如果觉得下载速度慢,可以Ctrl+C先退出这个命令,然后再输入命令重新进行下载,还是会接着上次的下载进度继续下载,速度会稍微快一些。

  • 下载完成后会出现success,接下来就可以进行对话了

  • 问一个AI经常会出错的问题:9.11和9.9哪个大

可以看到,会给出思考过程以及最终结论。 

  • 输入命令/bye可以退出对话

  • 输入命令ollama list可以查看下载好的模型

  • 输入ollama run + 对应的模型就可以进入对话

 这里输入ollama run deepseek-r1:latest可以发现再一次进入对话。

这样本地部署deepseek就算完成啦


感谢各位大佬支持!!!

互三啦!!!

### 如何在本地部署 DeepSeek 为了提供详细的指导,在本地环境中部署 DeepSeek 需要遵循一系列配置和安装过程。虽然具体细节可能依赖于特定版本的 DeepSeek 和操作系统环境,下面给出了一般性的步骤说明。 #### 准备工作 确保计算机上已经安装了 Docker 及其相关组件,因为大多数现代机器学习平台都基于容器化技术构建[^1]。对于 Linux 用户来说,还需要确认内核参数设置正确以支持必要的功能特性。 #### 安装 Minikube 并启动单节点集群 Minikube 是一个用于创建轻量级 Kubernetes 单节点集群工具,非常适合开发测试用途。通过命令 `$ minikube start` 来初始化一个新的 K8s 实例;如果希望打开 Web UI 进行可视化管理,则可以执行 `minikube dashboard` 命令来访问默认浏览器中的仪表板界面[^3]。 #### 设置存储解决方案 考虑到 DeepSeek 的数据持久性和性能需求,建议采用分布式文件系统作为后端存储方案之一。例如 Ceph 提供了一个强大的对象、块以及文件系统的组合服务。针对 Debian 或 Ubuntu 发行版,可以通过添加官方源并利用包管理器完成 ceph-deploy 工具链的获取与安装操作[^2]。 #### 获取 DeepSeek 应用镜像 联系供应商或者查阅官方文档找到合适的 Helm Chart 资源库地址,从中拉取最新稳定版的应用程序映像到本地仓库中待后续部署使用。 #### 编写自定义资源配置清单 根据实际业务场景调整 YAML 文件里的各项参数选项,比如副本数量、资源请求限额等字段值,从而更好地适配目标硬件条件下的运行状况。 #### 执行应用发布流程 最后一步就是运用 kubectl CLI 向 API Server 发送指令提交之前准备好的描述性模板,触发自动化调度机制使得各个 Pod 成功上线至指定命名空间之下正常运作起来。
评论 79
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值