限速标志检测系统源码分享

限速标志检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着城市化进程的加快,交通安全问题日益凸显,限速标志作为交通管理的重要组成部分,直接影响着道路交通的安全性和通畅性。限速标志的有效识别与检测,不仅有助于提高驾驶员的安全意识,还能为智能交通系统的构建提供基础数据支持。近年来,深度学习技术的迅猛发展为计算机视觉领域带来了新的机遇,尤其是在目标检测任务中,YOLO(You Only Look Once)系列模型因其高效性和准确性而受到广泛关注。YOLOv8作为该系列的最新版本,凭借其改进的网络结构和算法,展现出更强的实时检测能力和更高的检测精度。

本研究旨在基于改进的YOLOv8模型,构建一个高效的限速标志检测系统。该系统将利用“DataTrainYolov7”数据集,该数据集包含3000张图像,涵盖了10个类别的限速标志。这些类别不仅包括常见的限速标志,如16、17、18、20、21、22、23、24等数字标志,还涉及特定的交通标志(如“dog”和“nhathoducba”),为模型的训练提供了丰富的样本和多样化的场景。这种多样性有助于提高模型在不同环境下的适应能力,从而增强限速标志的检测准确性。

限速标志检测系统的研究意义在于,它不仅能够为交通管理部门提供实时的限速信息,还能为智能驾驶、自动驾驶等新兴技术的发展奠定基础。通过高效的限速标志检测,自动驾驶系统能够实时获取道路信息,从而做出更为安全的行驶决策。此外,该系统还可以与其他交通监控系统相结合,实现对交通流量的智能分析与管理,进而优化城市交通布局,提升交通效率。

在技术层面,改进YOLOv8模型的应用将推动目标检测技术的发展。YOLOv8在模型结构、特征提取、损失函数等方面的创新,能够有效提升检测速度和精度,尤其是在复杂背景下的目标检测能力。通过对YOLOv8的改进和优化,本研究将探索如何在保证实时性的前提下,进一步提高限速标志的检测精度,为后续的研究提供新的思路和方法。

综上所述,基于改进YOLOv8的限速标志检测系统的研究,不仅具有重要的理论价值,也具备广泛的应用前景。通过深入分析和探讨限速标志的检测技术,推动智能交通系统的发展,最终实现更安全、更高效的交通管理目标。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 10
names: [‘100’, ‘120’, ‘20’, ‘30’, ‘40’, ‘50’, ‘60’, ‘70’, ‘80’, ‘90’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们使用了名为“DataTrainYolov7”的数据集,以训练和改进YOLOv8模型在限速标志检测系统中的表现。该数据集专门设计用于交通标志识别,尤其是限速标志的检测与分类,旨在提高自动驾驶系统和交通监控系统的准确性与可靠性。数据集的构建充分考虑了现实交通环境中的多样性和复杂性,以确保模型在实际应用中的有效性。

“DataTrainYolov7”数据集包含10个类别的限速标志,这些类别分别是:100、120、20、30、40、50、60、70、80和90。这些类别涵盖了大多数国家和地区常见的限速标志,能够满足不同交通法规的需求。每个类别的标志代表了特定的速度限制,适用于城市道路、高速公路及其他类型的交通环境。数据集的多样性不仅体现在标志的种类上,还包括标志的形状、颜色、背景以及光照条件等多方面的变化,这些因素都可能影响模型的检测性能。

为了确保数据集的质量和有效性,数据集中的每一张图像都经过精心挑选和标注。标注过程中,使用了高精度的标注工具,确保每个限速标志的边界框准确无误。每个标志的类别信息也被详细记录,以便于后续的训练和评估。数据集中的图像来源广泛,包括城市街道、高速公路、乡村道路等多种场景,确保模型能够在不同的环境中进行有效的限速标志检测。

在数据集的构建过程中,特别关注了数据的平衡性。每个类别的样本数量经过精心设计,以避免模型在训练过程中出现偏倚现象。通过对每个类别进行均衡采样,确保模型在学习过程中能够充分接触到每种限速标志,从而提高其在实际应用中的泛化能力。此外,数据集中还包含了一些特殊情况的样本,例如被遮挡的标志、不同天气条件下的拍摄图像等,以增强模型的鲁棒性。

在训练过程中,我们将“DataTrainYolov7”数据集与YOLOv8模型相结合,利用其先进的特征提取和检测能力,旨在提升限速标志的检测精度和速度。通过对数据集的不断迭代和优化,我们期望最终构建出一个高效、准确的限速标志检测系统,能够在各种复杂的交通环境中稳定运行。

总之,“DataTrainYolov7”数据集为限速标志检测系统的训练提供了坚实的基础。通过对数据集的深入分析和合理利用,我们希望能够推动自动驾驶技术的发展,提高交通安全性,为智能交通系统的实现贡献一份力量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8是YOLO系列目标检测算法的最新进展,代表了计算机视觉领域在实时目标检测技术上的重要突破。相较于前一代的YOLOv5,YOLOv8在检测精度和速度上都实现了显著的提升,展现出更为强大的性能。其设计理念源于将目标检测任务转化为回归问题,通过一个统一的神经网络模型同时预测目标的位置和类别,进而实现高效的目标检测。

YOLOv8的网络结构可分为四个主要部分:输入端、骨干网络、颈部网络和头部网络。输入端采用了马赛克数据增强技术,这种方法通过将多张图像拼接在一起,生成多样化的训练样本,从而增强模型的泛化能力。此外,YOLOv8还引入了自适应锚框计算和自适应灰度填充,进一步提高了模型对不同场景的适应性。

在骨干网络部分,YOLOv8使用了C2f结构,这一模块是对残差特征进行学习的核心部分。C2f模块的设计灵感来源于YOLOv7的ELAN结构,通过增加分支和跨层连接,增强了模型的梯度流动性,从而提高了特征表示能力。与YOLOv5的C3结构相比,C2f结构的梯度流更加丰富,使得YOLOv8在特征提取上表现得更加出色。此外,YOLOv8还引入了空间金字塔池化融合(SPPF)结构,以进一步增强对多尺度特征的处理能力。

颈部网络采用了路径聚合网络(PAN)结构,旨在加强网络对不同缩放尺度对象的特征融合能力。PAN通过将不同层次的特征进行有效的聚合,使得模型能够更好地理解和处理不同尺寸的目标。这一设计使得YOLOv8在复杂场景下的表现更加稳健,能够有效应对各种目标检测任务。

头部网络是YOLOv8的另一个重要创新点。YOLOv8将分类和检测过程进行了解耦,采用了主流的解耦头结构,取代了以往的耦合头。这一改进使得分类和回归任务可以独立优化,从而提高了模型在复杂场景下的定位精度和分类准确性。同时,YOLOv8引入了无锚框检测头(Anchor-Free),这一方法避免了传统目标检测中锚框选择和调整的繁琐过程。通过直接预测目标的位置和大小,YOLOv8能够更快地聚焦于目标位置的邻近点,使得预测框更接近实际边界框区域。

在损失计算方面,YOLOv8采用了Task-Aligned Assigner分配策略,依据分类与回归的分数加权结果选择正样本。这一策略的引入使得模型在训练过程中能够更有效地分配正负样本,从而提升了训练效果。损失计算涵盖了分类和回归两个分支,其中分类分支使用了二元交叉熵损失(BCELoss),而回归分支则结合了分布焦点损失(DFLoss)和完全交并比损失函数(CIOULoss),进一步提高了模型对边界框预测的精准性。

YOLOv8的设计不仅在网络结构上进行了优化,还在模型的轻量化方面取得了显著进展。通过对不同尺度模型调整不同的通道数,YOLOv8实现了进一步的轻量化,使得模型能够在嵌入式设备上高效运行。这一特性使得YOLOv8在实时检测任务中具备了更强的适应性,能够满足各种应用场景的需求。

总的来说,YOLOv8作为YOLO系列的最新作品,融合了前几代算法的优点,结合了新的设计理念和技术,达到了实时检测领域的新高度。其高精度和快速响应的特点,使得YOLOv8在目标检测领域具有广泛的应用潜力。无论是在工业自动化、智能监控,还是在农业采摘等实际应用中,YOLOv8都展现出了强大的视觉识别能力,为各类任务的自动化提供了有力支持。随着YOLOv8的不断发展和完善,未来的目标检测技术将会更加智能和高效,为人类的生产和生活带来更多便利。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是经过精简和注释的核心代码:

import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令并捕获结果
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行结果,如果返回码不为0,则表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 主程序入口
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 假设脚本在当前目录下

    # 调用函数运行脚本
    run_script(script_path)

代码注释说明:

  1. 导入模块

    • sys:用于获取当前 Python 解释器的路径。
    • subprocess:用于执行外部命令。
  2. run_script 函数

    • 定义了一个函数 run_script,接收一个参数 script_path,表示要运行的脚本路径。
    • 使用 sys.executable 获取当前 Python 解释器的路径。
    • 构建一个命令字符串,使用 streamlit 模块运行指定的脚本。
    • 使用 subprocess.run 执行命令,并捕获执行结果。
    • 检查命令的返回码,如果不为0,表示脚本运行出错,打印错误信息。
  3. 主程序入口

    • 通过 if __name__ == "__main__": 确保只有在直接运行该脚本时才会执行以下代码。
    • 指定要运行的脚本路径(这里假设为 web.py)。
    • 调用 run_script 函数,传入脚本路径以执行。

这个程序文件 ui.py 是一个用于运行 Python 脚本的简单工具,特别是用于启动一个 Streamlit 应用。程序的核心功能是通过当前的 Python 环境来执行指定的脚本。

首先,文件导入了几个必要的模块,包括 sysossubprocess。其中,sys 模块用于访问与 Python 解释器相关的变量和函数,os 模块提供了与操作系统交互的功能,而 subprocess 模块则允许程序启动新进程、连接到它们的输入/输出/错误管道,并获取它们的返回码。

接下来,程序定义了一个名为 run_script 的函数,该函数接受一个参数 script_path,表示要运行的脚本的路径。在函数内部,首先获取当前 Python 解释器的路径,这通过 sys.executable 实现。然后,构建一个命令字符串,使用 streamlit run 命令来运行指定的脚本。这个命令会在当前的 Python 环境中执行。

随后,使用 subprocess.run 方法来执行构建好的命令。这个方法会在一个新的子进程中运行命令,并等待其完成。如果脚本运行的返回码不为零,表示执行过程中出现了错误,程序会打印出一条错误信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保当这个文件作为主程序运行时,以下代码才会被执行。这里指定了要运行的脚本路径为 web.py,并调用 run_script 函数来执行这个脚本。

总的来说,这个 ui.py 文件的功能是通过命令行调用 Streamlit 来运行一个名为 web.py 的 Python 脚本,提供了一种简便的方式来启动 Streamlit 应用。

11.2 code\ultralytics\data_init_.py

以下是保留的核心部分代码,并附上详细的中文注释:

# 导入基础数据集类
from .base import BaseDataset
# 导入构建数据加载器和YOLO数据集的函数
from .build import build_dataloader, build_yolo_dataset, load_inference_source
# 导入分类数据集、语义数据集和YOLO数据集的实现
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset

# 定义模块的公开接口,包含可以被外部访问的类和函数
__all__ = (
    "BaseDataset",          # 基础数据集类
    "ClassificationDataset", # 分类数据集类
    "SemanticDataset",      # 语义数据集类
    "YOLODataset",          # YOLO数据集类
    "build_yolo_dataset",   # 构建YOLO数据集的函数
    "build_dataloader",     # 构建数据加载器的函数
    "load_inference_source", # 加载推理源的函数
)

注释说明:

  1. 导入模块:代码首先导入了需要的类和函数,这些类和函数是构建和处理数据集的基础。
  2. 公开接口__all__ 列表定义了该模块的公共接口,只有在这个列表中的类和函数可以被外部访问。这有助于控制模块的可用性,避免外部访问内部实现细节。

这个程序文件是Ultralytics YOLO项目中的一个初始化文件,文件名为__init__.py,其主要作用是定义模块的公共接口。首先,文件顶部的注释部分表明这是Ultralytics YOLO项目的一部分,并且遵循AGPL-3.0许可证。

接下来,文件通过相对导入的方式引入了几个模块和类。具体来说,它从base模块中导入了BaseDataset类,从build模块中导入了三个函数:build_dataloaderbuild_yolo_datasetload_inference_source,以及从dataset模块中导入了三个数据集类:ClassificationDatasetSemanticDatasetYOLODataset

最后,__all__变量被定义为一个元组,列出了该模块公开的所有类和函数。这意味着当使用from module import *的方式导入时,只会导入这些指定的内容。这种做法有助于控制模块的接口,确保用户只接触到模块的公共部分,而隐藏内部实现细节。

总体而言,这个文件的主要功能是组织和暴露与数据集相关的类和构建函数,为YOLO模型的训练和推理提供必要的支持。

11.3 code\ultralytics\utils\callbacks_init_.py
# 导入必要的函数和模块
# Ultralytics YOLO 🚀, AGPL-3.0 license

# 从当前包的 base 模块中导入三个函数
from .base import add_integration_callbacks, default_callbacks, get_default_callbacks

# 定义模块的公开接口,指定可以被外部访问的函数
__all__ = "add_integration_callbacks", "default_callbacks", "get_default_callbacks"

代码注释说明:

  1. 导入模块

    • from .base import add_integration_callbacks, default_callbacks, get_default_callbacks:从当前包的 base 模块中导入三个函数。这些函数可能用于处理回调、默认回调设置等功能。
  2. 公开接口

    • __all__:这是一个特殊变量,用于定义模块的公共接口。当使用 from module import * 语句时,只有在 __all__ 中列出的名称会被导入。这有助于控制模块的可见性,避免不必要的名称冲突。

这个程序文件是一个Python模块,位于code/ultralytics/utils/callbacks/目录下,文件名为__init__.py。该文件的主要功能是初始化包,并定义了模块的公共接口。

首先,文件开头的注释部分提到这是与Ultralytics YOLO相关的代码,并指出该代码遵循AGPL-3.0许可证。这意味着该代码是开源的,用户可以自由使用和修改,但在分发修改后的版本时需要遵循相同的许可证条款。

接下来,文件通过from .base import ...语句从同一目录下的base模块中导入了三个函数:add_integration_callbacksdefault_callbacksget_default_callbacks。这些函数可能与回调机制有关,回调通常用于在特定事件发生时执行某些操作,这在机器学习和深度学习框架中是非常常见的。

最后,__all__变量被定义为一个元组,包含了上述导入的三个函数名。这一行的作用是明确指定当使用from module import *语句时,哪些名称会被导入。这是一个良好的编程习惯,可以帮助控制模块的公共接口,避免不必要的名称冲突。

总体来说,这个文件的主要作用是作为一个包的初始化文件,导入必要的功能,并定义模块的公共接口,以便其他模块可以方便地使用这些功能。

11.4 code\ultralytics_init_.py

以下是代码中最核心的部分,并附上详细的中文注释:

# 导入必要的库和模块
from ultralytics.models import YOLO  # 导入YOLO模型
from ultralytics.utils import SETTINGS as settings  # 导入设置配置
from ultralytics.utils.checks import check_yolo as checks  # 导入YOLO检查工具
from ultralytics.utils.downloads import download  # 导入下载工具

# 定义模块的版本
__version__ = "8.1.3"

# 定义模块的公开接口,方便其他模块导入
__all__ = "__version__", "YOLO", "checks", "download", "settings"

详细注释说明:

  1. 导入模块

    • from ultralytics.models import YOLO:导入YOLO模型,这是一个用于目标检测的深度学习模型。
    • from ultralytics.utils import SETTINGS as settings:导入设置配置,通常包含模型的超参数和其他配置选项。
    • from ultralytics.utils.checks import check_yolo as checks:导入YOLO相关的检查工具,用于验证模型的有效性和正确性。
    • from ultralytics.utils.downloads import download:导入下载工具,通常用于下载预训练模型或数据集。
  2. 版本定义

    • __version__ = "8.1.3":定义当前模块的版本号,便于版本管理和追踪。
  3. 公开接口

    • __all__ = "__version__", "YOLO", "checks", "download", "settings":定义模块的公开接口,确保在使用from module import *时,只导入这些指定的对象。这有助于控制模块的命名空间,避免不必要的名称冲突。

这个程序文件是Ultralytics YOLO库的初始化文件,文件名为__init__.py,用于定义该库的版本以及导入相关模块和类。

首先,文件开头有一个注释,表明这是Ultralytics YOLO项目,并指明其使用的许可证类型为AGPL-3.0。接着,定义了一个版本号__version__,其值为"8.1.3",这表明当前库的版本信息。

随后,文件导入了多个模块和类。具体来说,它从ultralytics.data.explorer.explorer模块中导入了Explorer类,这可能是用于数据探索和可视化的工具。此外,还导入了几个模型类,包括RTDETRSAMYOLO,以及从ultralytics.models.fastsam模块中导入的FastSAM类和从ultralytics.models.nas模块中导入的NAS类。这些模型类可能用于不同的计算机视觉任务,如目标检测和分割。

文件还导入了一些实用工具,包括SETTINGS,它可能包含一些配置设置;check_yolo,这个函数可能用于检查YOLO模型的有效性;以及download函数,用于下载相关资源或模型。

最后,使用__all__定义了一个公共接口,列出了该模块公开的名称,包括版本号、模型类、检查函数、下载函数、设置和数据探索器。这意味着在使用from ultralytics import *时,只有这些名称会被导入,从而控制了模块的可见性和使用方式。

总体来说,这个文件是Ultralytics YOLO库的核心部分,负责版本管理和模块的组织,使得用户可以方便地访问库中的功能。

11.5 train.py

以下是代码中最核心的部分,并附上详细的中文注释:

class DetectionTrainer(BaseTrainer):
    """
    DetectionTrainer类,继承自BaseTrainer类,用于基于检测模型的训练。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,`train`表示训练模式,`val`表示验证模式,用户可以为每种模式自定义不同的增强。
            batch (int, optional): 批次大小,仅在`rect`模式下使用。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构造并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式是训练或验证
        with torch_distributed_zero_first(rank):  # 在分布式训练中,确保数据集只初始化一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        if getattr(dataset, "rect", False) and shuffle:
            LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
            shuffle = False  # 如果使用rect模式,则不打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 根据模式设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对一批图像进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 将图像转移到设备并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择新的图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:  # 如果缩放因子不为1
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值
            batch["img"] = imgs  # 更新批次中的图像
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def get_validator(self):
        """返回YOLO模型验证器。"""
        self.loss_names = "box_loss", "cls_loss", "dfl_loss"  # 定义损失名称
        return yolo.detect.DetectionValidator(
            self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
        )  # 返回验证器

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )  # 绘制图像

    def plot_metrics(self):
        """从CSV文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图像

代码核心部分说明:

  1. DetectionTrainer类:用于训练YOLO检测模型的主要类,继承自基础训练类BaseTrainer
  2. build_dataset方法:根据输入的图像路径和模式构建YOLO数据集,支持训练和验证模式。
  3. get_dataloader方法:构建数据加载器,支持分布式训练,并根据模式选择是否打乱数据。
  4. preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和多尺度调整。
  5. get_model方法:返回一个YOLO检测模型,并可选择加载预训练权重。
  6. get_validator方法:返回用于验证模型性能的验证器。
  7. plot_training_samples和plot_metrics方法:用于可视化训练样本和训练过程中的指标。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的脚本,继承自 BaseTrainer 类。该文件包含多个方法,主要用于构建数据集、加载数据、预处理图像、设置模型属性、获取模型、验证模型、记录损失、显示训练进度以及绘制训练样本和指标。

首先,DetectionTrainer 类定义了一个用于目标检测的训练器。用户可以通过传入模型配置、数据集路径和训练周期等参数来实例化该类,并调用 train() 方法开始训练。

build_dataset 方法中,程序根据传入的图像路径和模式(训练或验证)构建 YOLO 数据集。它会根据模型的步幅计算图像的缩放因子,并调用 build_yolo_dataset 函数来生成数据集。

get_dataloader 方法则负责构建数据加载器,确保在分布式训练时只初始化一次数据集,并根据模式设置是否打乱数据。它还会根据训练或验证模式调整工作线程的数量。

preprocess_batch 方法用于对图像批次进行预处理,包括将图像缩放到合适的大小并转换为浮点数格式。它支持多尺度训练,通过随机选择图像大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称。这些信息将被附加到模型中,以便在训练过程中使用。

get_model 方法返回一个 YOLO 检测模型的实例,并可选择加载预训练权重。

get_validator 方法返回一个用于验证模型性能的 DetectionValidator 实例,包含损失名称以便后续记录和分析。

label_loss_items 方法用于返回带有标签的训练损失字典,方便记录和分析训练过程中的损失情况。

progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前周期、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注,帮助可视化训练过程中的数据。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和创建带标签的训练图,帮助用户更好地理解模型的训练效果和性能。

总体而言,这个文件实现了 YOLO 模型训练的核心功能,涵盖了数据处理、模型构建、训练过程监控和结果可视化等多个方面。

11.6 code\ultralytics\models\rtdetr\val.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
from ultralytics.data import YOLODataset
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import ops

class RTDETRDataset(YOLODataset):
    """
    实时检测与跟踪(RT-DETR)数据集类,继承自YOLODataset类。
    该数据集类专为RT-DETR目标检测模型设计,优化了实时检测和跟踪任务。
    """

    def __init__(self, *args, data=None, **kwargs):
        """初始化RTDETRDataset类,继承YOLODataset类的初始化方法。"""
        super().__init__(*args, data=data, **kwargs)

    def build_transforms(self, hyp=None):
        """构建数据转换操作,仅用于评估阶段。"""
        if self.augment:
            # 根据是否进行增强设置mosaic和mixup的值
            hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
            hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
            # 使用v8_transforms构建转换操作
            transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
        else:
            transforms = Compose([])  # 如果不进行增强,则不添加任何转换操作

        # 添加格式化操作,设置边界框格式、归一化等
        transforms.append(
            Format(
                bbox_format="xywh",  # 边界框格式为xywh
                normalize=True,  # 进行归一化
                return_mask=self.use_segments,  # 是否返回分割掩码
                return_keypoint=self.use_keypoints,  # 是否返回关键点
                batch_idx=True,  # 返回批次索引
                mask_ratio=hyp.mask_ratio,  # 掩码比例
                mask_overlap=hyp.overlap_mask,  # 掩码重叠
            )
        )
        return transforms


class RTDETRValidator(DetectionValidator):
    """
    RTDETRValidator类扩展了DetectionValidator类,提供专门针对RT-DETR模型的验证功能。
    该类允许构建RTDETR特定的数据集进行验证,应用非极大值抑制进行后处理,并相应更新评估指标。
    """

    def build_dataset(self, img_path, mode="val", batch=None):
        """
        构建RTDETR数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式(`train`或`val`),用户可以为每种模式自定义不同的增强操作。
            batch (int, optional): 批次大小,仅用于`rect`模式。默认为None。
        """
        return RTDETRDataset(
            img_path=img_path,
            imgsz=self.args.imgsz,
            batch_size=batch,
            augment=False,  # 不进行增强
            hyp=self.args,
            rect=False,  # 不使用矩形模式
            cache=self.args.cache or None,
            prefix=colorstr(f"{mode}: "),
            data=self.data,
        )

    def postprocess(self, preds):
        """对预测输出应用非极大值抑制。"""
        bs, _, nd = preds[0].shape  # 获取批次大小、通道数和预测框数量
        bboxes, scores = preds[0].split((4, nd - 4), dim=-1)  # 分离边界框和分数
        bboxes *= self.args.imgsz  # 将边界框缩放到原始图像大小
        outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs  # 初始化输出

        for i, bbox in enumerate(bboxes):  # 遍历每个边界框
            bbox = ops.xywh2xyxy(bbox)  # 将xywh格式转换为xyxy格式
            score, cls = scores[i].max(-1)  # 获取最大分数和对应的类别
            pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1)  # 合并边界框、分数和类别
            pred = pred[score.argsort(descending=True)]  # 按照分数排序
            outputs[i] = pred  # 保存结果

        return outputs

    def _prepare_batch(self, si, batch):
        """准备训练或推理的批次,应用转换操作。"""
        idx = batch["batch_idx"] == si  # 获取当前批次的索引
        cls = batch["cls"][idx].squeeze(-1)  # 获取类别
        bbox = batch["bboxes"][idx]  # 获取边界框
        ori_shape = batch["ori_shape"][si]  # 获取原始图像形状
        imgsz = batch["img"].shape[2:]  # 获取图像大小
        ratio_pad = batch["ratio_pad"][si]  # 获取填充比例

        if len(cls):
            bbox = ops.xywh2xyxy(bbox)  # 转换边界框格式
            bbox[..., [0, 2]] *= ori_shape[1]  # 还原到原始空间
            bbox[..., [1, 3]] *= ori_shape[0]  # 还原到原始空间

        return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)

    def _prepare_pred(self, pred, pbatch):
        """准备并返回转换后的边界框和类别标签的批次。"""
        predn = pred.clone()  # 克隆预测结果
        predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz  # 还原到原始空间
        predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz  # 还原到原始空间
        return predn.float()  # 返回浮点型的预测结果

代码核心部分说明:

  1. RTDETRDataset类:用于创建RT-DETR特定的数据集,继承自YOLODataset,包含数据加载和转换的逻辑。
  2. build_transforms方法:根据增强设置构建数据转换操作,支持不同的图像预处理。
  3. RTDETRValidator类:扩展了DetectionValidator,提供RT-DETR模型的验证功能,包括数据集构建和后处理。
  4. postprocess方法:实现非极大值抑制,处理模型预测的边界框和分数,确保输出的边界框是最优的。
  5. _prepare_batch和_prepare_pred方法:用于准备训练或推理的批次数据,确保数据格式正确并进行必要的转换。

这个程序文件是用于实现RT-DETR(实时检测与跟踪)模型的验证功能,继承自Ultralytics YOLO框架。文件中定义了两个主要的类:RTDETRDatasetRTDETRValidator

RTDETRDataset类扩展了YOLODataset类,专门用于RT-DETR模型的数据集处理。它的构造函数调用了父类的构造函数,并提供了加载图像和构建变换的方法。load_image方法用于从数据集中加载指定索引的图像,并返回图像及其调整后的尺寸。build_transforms方法用于构建图像变换,主要用于评估阶段。如果启用了增强,变换将包括一些图像处理操作,如mosaic和mixup;否则,将返回一个空的变换列表。最后,Format类用于格式化边界框,支持不同的输出需求,如归一化和返回掩码。

RTDETRValidator类继承自DetectionValidator类,提供了针对RT-DETR模型的验证功能。它的build_dataset方法用于构建RTDETR数据集,接收图像路径、模式(训练或验证)和批量大小作为参数。该方法创建并返回一个RTDETRDataset实例,禁用数据增强和矩形模式。postprocess方法应用非极大值抑制(NMS)来处理模型的预测输出,确保只保留最优的边界框。它将预测的边界框和分数分开,进行坐标转换,并根据分数进行排序,最终返回处理后的输出。_prepare_batch_prepare_pred方法用于准备批次数据和预测结果,确保在进行训练或推理时,数据的格式和尺寸正确。

整个文件的设计旨在支持RT-DETR模型的验证流程,确保数据处理、预测后处理和结果格式化的高效性和准确性。通过这个程序,用户可以方便地进行模型的验证和性能评估。

12.系统整体结构(节选)

程序整体功能和构架概括

该程序是一个基于Ultralytics YOLO框架的目标检测和分割模型训练与验证工具,主要包括多个模块和文件,每个文件负责特定的功能。整体架构旨在提供一个灵活且高效的环境,以便用户能够方便地训练、验证和使用YOLO系列模型(如YOLOv8、RT-DETR等)。

  1. 数据处理:通过不同的数据集类和加载器,程序能够处理和预处理图像数据,以适应不同的模型需求。
  2. 模型训练:提供了训练器类,负责模型的训练过程,包括数据加载、损失计算、进度监控等。
  3. 模型验证:通过验证器类,程序能够评估模型的性能,提供准确度、损失等指标。
  4. 可视化:包含绘制训练样本和指标的功能,帮助用户理解模型的训练过程和效果。
  5. 模块化设计:各个功能模块相对独立,便于维护和扩展。

文件功能整理表

文件路径功能描述
D:\tools\20240809\code\ui.py启动Streamlit应用,提供用户界面以运行指定的训练或验证脚本。
D:\tools\20240809\code\code\ultralytics\data\__init__.py初始化数据模块,导入数据集相关类和函数,构建数据集接口。
D:\tools\20240809\code\code\ultralytics\utils\callbacks\__init__.py初始化回调模块,导入回调相关函数,提供训练过程中的回调机制。
D:\tools\20240809\code\code\ultralytics\__init__.py初始化Ultralytics库,定义版本信息,导入模型和工具类。
D:\tools\20240809\code\train.py实现YOLO模型的训练过程,包括数据集构建、模型设置和训练监控。
D:\tools\20240809\code\code\ultralytics\models\rtdetr\val.py实现RT-DETR模型的验证功能,处理数据集和预测结果的后处理。
D:\tools\20240809\code\code\ultralytics\models\sam\modules\sam.py可能用于SAM(Segment Anything Model)模型的实现或相关功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\hub\session.py可能用于管理会话和模型的加载与保存。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\segment\__init__.py初始化YOLO分割模型模块,导入相关类和函数。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\ops_dcnv3\modules\__init__.py初始化DCNv3模块,可能用于特定的卷积操作。
code\ultralytics\models\yolo\classify\train.py实现YOLO分类模型的训练过程,处理数据集和训练逻辑。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\trackers\byte_tracker.py实现字节跟踪器,可能用于目标跟踪功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\data\loaders.py提供数据加载功能,支持不同格式的数据集加载。

以上表格总结了每个文件的主要功能,帮助用户理解程序的整体结构和各个模块的作用。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/DataTrainYolov7463

参考原始博客2: https://github.com/VisionMillionDataStudio/DataTrainYolov7463

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值