Windows与Ubuntu平台神经网络运行效率比较

本文对比了在Windows和Ubuntu平台上使用MXNet和Pytorch架构进行全卷积神经网络(FCN)训练的速度差异,发现Ubuntu平台在大型训练任务中表现更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近一直在搞神经网络,因为习惯了Windows的操作,一直在Windows下看文章写东西,也就顺势在Windows下做了代码编写和训练。一开始觉得速度也就那样,没太注意,但一次因为电脑比较忙拿同样的代码到别的装了Ubuntu系统的机子上面跑,才发现它们的效率意外的相去甚远。

猜想操作系统本身可能会影响网络训练效率,因此在同一台机子上测试了同样的代码在两个操作系统平台下的运行速度,希望看到的人能得到些许有用信息。

MXNet架构

实现内容为FCN全卷积神经网络,基本照抄的沐神的公开课的代码。

Windows平台:
在这里插入图片描述
Ubuntu平台
在这里插入图片描述
Pytorch架构

实现内容同样是FCN全卷积神经网络,是本人自己写的代码。

Windows平台:
在这里插入图片描述
Ubuntu平台
在这里插入图片描述
因为近期只做了这两个程序,就对比了这两个,后面如果有新的会放上来。但从这两个程序的结果可以明显看出,Ubuntu平台或多或少还是要快一些,所以如果做大型训练,还是应该选择Ubuntu或者其他Linux平台更靠谱。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值