MCP-1:MCP组件与工作流程
1.什么是MCP
MCP(Model Context Protocol,模型上下文协议) 是由 Anthropic 推出的开放标准协议,旨在为大型语言模型(LLM)与外部数据源、工具之间提供标准化的交互方式。它通过定义统一的接口和通信机制,使 AI 模型能够安全、灵活地访问外部资源(如数据库、API、文件系统等),从而突破训练数据限制,提升模型在复杂任务中的实用性。
2.MCP架构组件

2.1.MCP Hosts
MCP Hosts(主机)作为用户与 AI 模型交互的入口,负责发起请求并传递用户指令,例如 IDE(如 Cursor)、桌面应用(如 Claude Desktop)等。
功能:
接收用户输入(如提问、代码调试指令)并传递给 LLM;
控制本地资源的安全访问权限(如企业知识库、私有数据库)。
2.2.MCP Client
MCP Clients(客户端):位于 Host 内部的中间件,负责与 MCP Server 建立连接并管理通信。
功能:
维护与服务器的 1:1 持久连接,支持实时数据同步;
根据 LLM 需求自动选择最优服务器组合(如优先调用本地 Server 以减少延迟)。
2.3.MCP Server
MCP Server(服务器):功能提供层,通过标准化协议封装数据、工具和提示模板。
它可以被理解为一个比如python类,类中有多个function,function被成为MCP Tool。
功能:
对外暴露 Resources(数据)、Tools(工具)、Prompts(模板)三大核心能力;
支持本地与云端资源集成(如连接数据库、调用 SaaS API)。
3.交互流程

3.1.用户提问
用户向 AI Agent 发起提问。此时,AI Agent 作为 MCP Client,将用户问题连同 MCP Server 及 MCP Tool 信息发送给大模型(LLM)。
3.2.LLM 推理选择MCP Server(大模型规划)
LLM 接收到信息后,根据用户问题和 MCP Server 信息,筛选出最合适的 MCP Server 和 MCP Tool 来解决问题,并将结果反馈给 AI Agent(MCP Client)。LLM 返回的信息可能是:“使用 XX MCP Server 中的 xx MCP Tool,它能解决用户的问题。”
3.3.调用 MCP Tool
AI Agent(MCP Client)依据 LLM 的建议,调用对应 MCP Server 中的 MCP Tool。
3.4.返回结果
MCP Server 将处理结果返回给 AI Agent(MCP Client)。
3.5.数据清洗
AI Agent(MCP Client)将用户问题和从 MCP Server 获取的结果再次提交给 LLM,请求 LLM 结合问题和答案规整内容。
3.6.反馈信息给用户
LLM 将规整后的内容返回给 AI Agent(MCP Client),AI Agent 再将结果原封不动地返回给用户。

363

被折叠的 条评论
为什么被折叠?



