一、背景
Vintage一词源自葡萄酒业,意思是葡萄酒酿造年份。因为每年的天气、温度、湿度、病虫害等情况不同,而这些因素都会对葡萄酒的品质产生很大的影响,所以人们对葡萄酒以葡萄当年的采摘年份进行标识来加以品质区分。现在Vintage分析被广泛应用于信用卡行业,目前在信贷行业也将其作为一个非常重要的指标,分析的方法是针对信用贷款不同时期放款的资产进行分别跟踪,按账龄长短进行同步对比,从而了解不同时期的资产质量情况。
二、目的
将原始数据制作成vintage表格(也叫蝴蝶图),网上有通过Oracle 窗口函数 lead()实现,操作也比较简单,本文采用R语言dplyr包、sqldf包制作vintage表格。
三、 Vintage分析
将数据读入到R 软件中,通过 本文所用数据源自网络,以信用卡行业为例,信贷行业可以直接引用,字段说明 data_faka: 发卡日期;date_mob:逾期日期;overduerate:违约率。
调动包,导入数据
对数据按首列排序,
data1<-data %>% group_by(date_faka) %>% mutate(M3 = lead(overduerate,0,order_by = date_mob))%>% arrange(date_faka, date_mob)
对前两列做日期格式转换,并将NA值替换为空白,得到如下,即为我们所需的vintage表。
四、结论
在实际操作中,先要求出违约率,其他类似指标也可参照本文代码操作。
如何用R语言做Vintage分析
最新推荐文章于 2025-04-16 10:00:00 发布