tf.cast()函数的作用是执行 tensorflow 中张量数据类型转换,比如把int8转换为float32。
用法:
a=tf.cast(x, dtype, name=None)
- 第一个参数 x: 待转换的数据(张量)
- 第二个参数 dtype: 目标数据类型
- 第三个参数 name: 可选参数,定义操作的名称
举个例子:
int32转换为float32:
import tensorflow as tf
t1 = tf.Variable([1,2,3,4,5])
t2 = tf.cast(t1,dtype=tf.float32)
print 't1: {}'.format(t1)
print 't2: {}'.format(t2)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(t2)
print t2.eval()
输出:
t1: <tf.Variable 'Variable:0' shape=(5,) dtype=int32_ref>
t2: Tensor("Cast:0", shape=(5,), dtype=float32)
[ 1. 2. 3. 4. 5.]
tensorflow中的数据类型列表:
数据类型 | Python 类型 | 描述 |
---|---|---|
DT_FLOAT | tf.float32 | 32 位浮点数. |
DT_DOUBLE | tf.float64 | 64 位浮点数. |
DT_INT64 | tf.int64 | 64 位有符号整型. |
DT_INT32 | tf.int32 | 32 位有符号整型. |
DT_INT16 | tf.int16 | 16 位有符号整型. |
DT_INT8 | tf.int8 | 8 位有符号整型. |
DT_UINT8 | tf.uint8 | 8 位无符号整型. |
DT_STRING | tf.string | 可变长度的字节数组.每一个张量元素都是一个字节数组. |
DT_BOOL | tf.bool | 布尔型. |
DT_COMPLEX64 | tf.complex64 | 由两个32位浮点数组成的复数:实数和虚数. |
DT_QINT32 | tf.qint32 | 用于量化Ops的32位有符号整型. |
DT_QINT8 | tf.qint8 | 用于量化Ops的8位有符号整型. |
DT_QUINT8 | tf.quint8 | 用于量化Ops的8位无符号整型. |