机器学习--PCA(主成分分析)原理及应用

众所周知PCA是有效的降维方法,当你的特征非常多维度非常大的时候,为了使机器学习的算法在计算或是训练的时候有更高的效率,通常会进行降维处理。

将一个具有m个数据n维的数据降为k维的数据,方法如下:

算出一个sigma矩阵,x(i)为n*1的矩阵,因此x(i)转置为1*n,因此sigma的形状为n*n。

svd为奇异值分解函数,得到一个U矩阵,也为n*n矩阵。

取U矩阵的前k列,与x相乘,得到降维后的数据。


那么如何选择k值呢?看下图:


要使差异性小于等于0.01,当然有时候也使用0.05或是0.1等等。


比较蠢的方法自然是把k从1一直往上加,一直来计算相似度。但是有更好的办法,之前算奇异值的时候得到了一个S矩阵,计算方式如下图:


得到:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哎呦不错的温jay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值